ОДЗ {x²-x-3>0 {2x²+x-3>0 {x²-2≠0 1)x²-x-3>0 D=1+12=13 x1=(1-√13)/2 U x2=(1+√13)/2 x<(1-√13)/2 U x>(1+√13)/2 2)2x²+x-3>0 D=1+24=25 x1=(-1-5)4=-1,5 U x=(-1+5)/4=1 x<-1,5 U x>1 3)x²-2≠0 x²≠2 x≠-√2 U x≠√2 x∈(-∞;-1,5) U ((1+√13)/2;∞) log(3)[(x²-x-3)(2x²+x-3)/(x²-2)²]≥log(3)(9/4) [(x²-x-3)(2x²+x-3)/(x²-2)²]≥9/4 [(x²-x-3)(2x²+x-3)/(x²-2)²]-9/4≥0 (8x^4+4x³-12x²-8x³-4x²+12x-24x²+-12x+36-9x^4+36x²-36)/4(x²-2)²≥0 (-x^4-4x³-4x²)/4(x²-2)²≥0 -x²(x²+4x+4)/4(x²-2)²≥0 x²(x+2)²/4(x²-2)²≤0 x=0∉ОДЗ x=-2∉ОДЗ ответ нет решения
{x²-x-3>0
{2x²+x-3>0
{x²-2≠0
1)x²-x-3>0
D=1+12=13
x1=(1-√13)/2 U x2=(1+√13)/2
x<(1-√13)/2 U x>(1+√13)/2
2)2x²+x-3>0
D=1+24=25
x1=(-1-5)4=-1,5 U x=(-1+5)/4=1
x<-1,5 U x>1
3)x²-2≠0
x²≠2
x≠-√2 U x≠√2
x∈(-∞;-1,5) U ((1+√13)/2;∞)
log(3)[(x²-x-3)(2x²+x-3)/(x²-2)²]≥log(3)(9/4)
[(x²-x-3)(2x²+x-3)/(x²-2)²]≥9/4
[(x²-x-3)(2x²+x-3)/(x²-2)²]-9/4≥0
(8x^4+4x³-12x²-8x³-4x²+12x-24x²+-12x+36-9x^4+36x²-36)/4(x²-2)²≥0
(-x^4-4x³-4x²)/4(x²-2)²≥0
-x²(x²+4x+4)/4(x²-2)²≥0
x²(x+2)²/4(x²-2)²≤0
x=0∉ОДЗ
x=-2∉ОДЗ
ответ нет решения
Раскрываем скобки
x^3 - 7x^2 - 4x^2 + 28x - 49x + 343 - x^2 - 4x + 21 = 0
x^3 - 12x^2 - 29x + 364 = 0
Это уравнение имеет 3 иррациональных корня, их можно подобрать.
f(-5) = 84 > 0; f(-6) = -110 < 0
-6 < x1 < -5
f(5) = 44 > 0; f(6) = -26 < 0
5 < x2 < 6
f(11) = -76 < 0; f(12) = 16 > 0
11 < x3 < 12
Можно дальше уточнить
x^3 - 12x^2 - 29x + 364 = 0
f(-5,4) = 13,216 > 0; f(-5,5) = -5,875 < 0
-5,5 < x1 < -5,4
f(-5,47) = -0,088123
x1 ~ -5,47
f(5,5) = 7,875 > 0; f(5,6) = 0,896 > 0; f(5,7) = -5,987 < 0
f(5,61) = 0,203281
x2 ~ 5,61
f(11,8) = -6,048 < 0; f(11,9) = 4,739 > 0
11,8 < x3 < 11,9
f(11,86) = 0,367656
x3 ~ 11,86