а) 3,1
б) 4
Объяснение:
а) 6х - 18,6 = 0
Группируем все неизвестные в левой части уравнения, а известные - в правой.
Если неизвестное или известное переносим из одной части уравнения в другую, то меняем знак.
6х оставляем в левой части, а (-18,6) переносим в правую части, при этом меняем знак.
Получаем:
6х = 18,6
Теперь смотри, что не известно.
6х - это 6 умножить на х, где х - неизвестный сомножитель.
Чтобы найти неизвестный сомножитель, надо произведение (18,6) разделить на известных сомножитель:
х = 18,6 : 6
х = 3,1.
Заканчивается решение уравнения ПРОВЕРКОЙ.
Проверка делается так:
1) подставим в первоначальное уравнение вместо х его значение;
2) если уравнение решено правильно, то должно получиться верное равенство, в котором левая часть равна правой части.
Подставляем:
6 · 3,1 - 18,6 = 0
И в исходном уравнении в правой части тоже 0.
Значит, уравнение решено верно.
После этого даём ответ.
ответ: х = 3,1.
б) 3х + 1 = 17 - х
3х + х = 17 - 1
4х = 16
х = 16 : 4
х = 4
ПРОВЕРКА:
левая часть: 3 · 4 + 1 = 13
правая часть: 17 - 4 = 13
левая часть (13) равна правой части (13) - значит, х найден верно.
ответ: х = 4
Собственная скорость Vc= х км/ч.
Против течения :
t₁ = S/(Vc- Vт) = 18 / (x-3) (ч.)
По течению:
t₂= S/ (Vc+Vт) = 48/ (x+3) (ч.)
Всего:
t₁+t₂=3 (ч.)
18/(х-3) + 48/(х+3) = 3 |× (x-3)(x+3)
18(x+3) + 48(x-3) = 3(x-3)(x+3)
18x+54 + 48x - 144= 3(x²-9)
66x -90 = 3x² - 27 |÷3
22x - 30 = x²-9
x²-9 -22x+30=0
x²-22x+21=0
D= (-22)² -4*1*21 = 484-84=400 ; √D= 20
x₁= (22 -20) /2 =2/2=1 - не удовл. условию, т.к. скорость лодки не может быть меньше течения реки
x₂= (22+20)/2= 42/2=21 (км/ч) Vc
ответ: Vc= 21 км/ч.
а) 3,1
б) 4
Объяснение:
а) 6х - 18,6 = 0
Группируем все неизвестные в левой части уравнения, а известные - в правой.
Если неизвестное или известное переносим из одной части уравнения в другую, то меняем знак.
6х оставляем в левой части, а (-18,6) переносим в правую части, при этом меняем знак.
Получаем:
6х = 18,6
Теперь смотри, что не известно.
6х - это 6 умножить на х, где х - неизвестный сомножитель.
Чтобы найти неизвестный сомножитель, надо произведение (18,6) разделить на известных сомножитель:
х = 18,6 : 6
х = 3,1.
Заканчивается решение уравнения ПРОВЕРКОЙ.
Проверка делается так:
1) подставим в первоначальное уравнение вместо х его значение;
2) если уравнение решено правильно, то должно получиться верное равенство, в котором левая часть равна правой части.
Подставляем:
6 · 3,1 - 18,6 = 0
И в исходном уравнении в правой части тоже 0.
Значит, уравнение решено верно.
После этого даём ответ.
ответ: х = 3,1.
б) 3х + 1 = 17 - х
3х + х = 17 - 1
4х = 16
х = 16 : 4
х = 4
ПРОВЕРКА:
левая часть: 3 · 4 + 1 = 13
правая часть: 17 - 4 = 13
левая часть (13) равна правой части (13) - значит, х найден верно.
ответ: х = 4
Объяснение:
Собственная скорость Vc= х км/ч.
Против течения :
t₁ = S/(Vc- Vт) = 18 / (x-3) (ч.)
По течению:
t₂= S/ (Vc+Vт) = 48/ (x+3) (ч.)
Всего:
t₁+t₂=3 (ч.)
18/(х-3) + 48/(х+3) = 3 |× (x-3)(x+3)
18(x+3) + 48(x-3) = 3(x-3)(x+3)
18x+54 + 48x - 144= 3(x²-9)
66x -90 = 3x² - 27 |÷3
22x - 30 = x²-9
x²-9 -22x+30=0
x²-22x+21=0
D= (-22)² -4*1*21 = 484-84=400 ; √D= 20
x₁= (22 -20) /2 =2/2=1 - не удовл. условию, т.к. скорость лодки не может быть меньше течения реки
x₂= (22+20)/2= 42/2=21 (км/ч) Vc
ответ: Vc= 21 км/ч.