Переносим куб из степени вперед по свойству логарифма: log^(5-x) по 2 - 6 log (5-x) по 2 + 9 Вводим функцию, у = log^(5-x) по 2 - 6 log (5-x) по 2 + 9 Приравниваем к нулю = log^(5-x) по 2 - 6 log (5-x) по 2 + 9 = 0 теперь вводим новую переменную => log (5-x) по 2 = t переписываем с t = t^2 - 6t + 9 = 0 Решаем уравнение: Дискриминант: 36 - 36 = 0 t = 6+0/2 => t = 3 Приравниваем: log (5-x) по 2 = 3 находим х 2^3 = 5 - х 5 - х = 8 - х = 3 х = - 3 Теперь строим координатный луч и отмечаем на нем точку х = - 3 (точка закрашенная, т. к. меньше равно) И закрашиваем промежуток, которому принадлежат значения х. ответ: х принадлежит (- бесконечности; -3]
1) sina = 3/5
cosa = (+ -) √(1 - sin²a) = (+ -)√(1 - (3/5)²)) = (+ -)√(16/25) = (+ -) (4/5)
tga = sina/cosa
tga = 3/5 : 4/5 = 3/4
tga = 3/5 : (-4/5) = - 3/4
tga * cos²a = (3/4) * (4/5)² = (3*16)/(16/25) = 12/25
tga * cos²a = ( - 3/4) * (4/5)² = (- 3*16)/(16/25) = - 12/25
tga * cos²a = tg0 * cos²0 = 0 * 1 = 0
2) cosa = 5/13
sinx = (+ -)√(1 - cos²a) = (+ -)√(1 - (5/13)²) = (+ -) √(144/169) = (+ -) (12/13)
ctga = cosa/sina
ctga = 5/13 : (12/13) = 5/12
ctga = 5/13 : (- 12/13) = - 5/12
ctga * sin²a = 5/12 * 144/169 = 60/169
ctga * sin²a = - 5/12 * 144/169 = - 60/169
log^(5-x) по 2 - 6 log (5-x) по 2 + 9
Вводим функцию, у = log^(5-x) по 2 - 6 log (5-x) по 2 + 9
Приравниваем к нулю = log^(5-x) по 2 - 6 log (5-x) по 2 + 9 = 0
теперь вводим новую переменную => log (5-x) по 2 = t
переписываем с t = t^2 - 6t + 9 = 0
Решаем уравнение:
Дискриминант: 36 - 36 = 0
t = 6+0/2 => t = 3
Приравниваем: log (5-x) по 2 = 3
находим х
2^3 = 5 - х
5 - х = 8
- х = 3
х = - 3
Теперь строим координатный луч и отмечаем на нем точку х = - 3 (точка закрашенная, т. к. меньше равно)
И закрашиваем промежуток, которому принадлежат значения х.
ответ: х принадлежит (- бесконечности; -3]