1) Неправильная дробь. Выделяем целую часть.
Делим "углом"
x³ на х²-2х-3
получим
х+2+(7х+6)/(x²-2x-3)
Применяем свойство интегрирования: интеграл от суммы равен сумме интегралов.
=∫(х+2)dx+∫(7x+6)dx/(x²-2x-3)
Во втором интеграле выделяем полный квадрат
x²-2x-3=(х-1)²-4
и замену переменной
х-1=t
x=t+1
dx=dt
=∫(x+2)dx+∫(7t+3)dt/(t²-4)=(x²/2)+2x+(7/2)∫d(t²-4)/(t²-4)+3∫dt/(t²-4)=
=(x²/2)+2x+(7/2)ln|t²-4|+3/4ln|(t-2)/(t+2)+C=
=(x²/2)+2x+(7/2)ln|x²-2x-3|+3/4ln|(x-3)/(x+1)+C - о т в е т.
2
=(1/4)∫√(4х-1)d(4x-1)=(1/4)∫(4х-1)¹/²d(4x-1)=
(1/4)·(4х-1)³/²/(3/2) + С=(1/6)√(4х-1)³+С=(1/6)(4x-1)·√(4x-1)+C
3.
=(1/9)∫∛(9x-1)d(9x-1)=(1/9)∫(9x-1)¹/³d(4x-1)=(1/9)(9x-1)⁴/³/(4/3) + C=
=(1/12)(9x-1)·∛(9x-1) + C
1) Неправильная дробь. Выделяем целую часть.
Делим "углом"
x³ на х²-2х-3
получим
х+2+(7х+6)/(x²-2x-3)
Применяем свойство интегрирования: интеграл от суммы равен сумме интегралов.
=∫(х+2)dx+∫(7x+6)dx/(x²-2x-3)
Во втором интеграле выделяем полный квадрат
x²-2x-3=(х-1)²-4
и замену переменной
х-1=t
x=t+1
dx=dt
=∫(x+2)dx+∫(7t+3)dt/(t²-4)=(x²/2)+2x+(7/2)∫d(t²-4)/(t²-4)+3∫dt/(t²-4)=
=(x²/2)+2x+(7/2)ln|t²-4|+3/4ln|(t-2)/(t+2)+C=
=(x²/2)+2x+(7/2)ln|x²-2x-3|+3/4ln|(x-3)/(x+1)+C - о т в е т.
2
=(1/4)∫√(4х-1)d(4x-1)=(1/4)∫(4х-1)¹/²d(4x-1)=
(1/4)·(4х-1)³/²/(3/2) + С=(1/6)√(4х-1)³+С=(1/6)(4x-1)·√(4x-1)+C
3.
=(1/9)∫∛(9x-1)d(9x-1)=(1/9)∫(9x-1)¹/³d(4x-1)=(1/9)(9x-1)⁴/³/(4/3) + C=
=(1/12)(9x-1)·∛(9x-1) + C
пусть х = 0,(18), тогда 100х = 18,(18)
100х - х = 18,(18) - 0,(18)
99х = 18
х= 18/99 = 2/11
0,(18) = 2/11
б) 3,(2);
пусть х = 3,(2), тогда 10х = 32,(2)
10х-х = 32,(2) - 3,(2)
9х = 29
х = 29/9
3(2) = 29/9
в) 6,1(8);
пусть х = 6,1(8), тогда 10х = 61,8(8)
10х - х = 61,8(8) - 6,1(8)
9х = 55,7
90х = 557
х = 557/90
6,1(8) = 557/90
г) 5,12(18);
пусть х = 5,12(18), тогда 100х = 512,18(18)
100х - х = 512,18(18)-5,12(18)
99х = 507,06
9900х = 50706
1100х = 5634
х = 5634/1100
5,12(18) = 5634/1100
д) 25,1(378)
пусть х = 25,1(378), тогда 1000х = 25137,8(378)
1000х-х = 25137,8(378) - 25,1(378)
999х = 25112,7
9990х=251127
1110х = 27903
370х = 9301
х = 9301/370
25,1(378) = 9301/370