Ну тут все просто) Так как это не система, мы можешь подобрать любые числа, подчиняющиеся данным условиям) а) x=3, y=1 Проверка: 3-1=2 и 3+1=не равняется 8, не является решением второго, но является решением первого уравнения б) x=6, y=2 Проверка: 6-2=не равняется двум и 6+2=8, не является решением первого, но является решением второго в) x=5, y=3 Проверка: 5-3=2 и 5+3=8, являются решением и первого, и второго уравнения г) x=8, y=2 Проверка: 8-2=не равняется двум и 8+2=не равняется 8, значит не является решением ни первого уравнения ни второго
Это уже, кстати, «боевое» задание – на практике довольно часто требуется записать несколько членов ряда.
Сначала , тогда:
Затем , тогда:
Потом , тогда:
Процесс можно продолжить до бесконечности, но по условию требовалось написать первые три члена ряда, поэтому записываем ответ:
Обратите внимание на принципиальное отличие от числовой последовательности,
в которой члены не суммируются, а рассматриваются как таковые.
Пример 2
Записать первые три члена ряда
Это пример для самостоятельного решения, ответ в конце урока
Даже для сложного на первый взгляд ряда не составляет трудности расписать его в развернутом виде:
Пример 3
Записать первые три члена ряда
На самом деле задание выполняется устно: мысленно подставляем в общий член ряда сначала , потом и . В итоге:
ответ оставляем в таком виде, полученные члены ряда лучше не упрощать, то есть не выполнять действия: , , . Почему? ответ в виде гораздо проще и удобнее проверять преподавателю.
Иногда встречается обратное задание
Пример 4
Записать сумму в свёрнутом виде с общим членом ряда
Здесь нет какого-то четкого алгоритма решения, закономерность нужно увидеть.
В данном случае:
Для проверки полученный ряд можно «расписать обратно» в развернутом виде.
А вот пример чуть сложнее для самостоятельного решения:
Пример 5
Записать сумму в свёрнутом виде с общим членом ряда
Выполнить проверку, снова записав ряд в развернутом виде
Так как это не система, мы можешь подобрать любые числа, подчиняющиеся данным условиям)
а) x=3, y=1
Проверка:
3-1=2 и 3+1=не равняется 8, не является решением второго, но является решением первого уравнения
б) x=6, y=2
Проверка:
6-2=не равняется двум и 6+2=8, не является решением первого, но является решением второго
в) x=5, y=3
Проверка:
5-3=2 и 5+3=8, являются решением и первого, и второго уравнения
г) x=8, y=2
Проверка:
8-2=не равняется двум и 8+2=не равняется 8, значит не является решением ни первого уравнения ни второго
Записать первые три члена ряда
Это уже, кстати, «боевое» задание – на практике довольно часто требуется записать несколько членов ряда.
Сначала , тогда:
Затем , тогда:
Потом , тогда:
Процесс можно продолжить до бесконечности, но по условию требовалось написать первые три члена ряда, поэтому записываем ответ:
Обратите внимание на принципиальное отличие от числовой последовательности,
в которой члены не суммируются, а рассматриваются как таковые.
Пример 2
Записать первые три члена ряда
Это пример для самостоятельного решения, ответ в конце урока
Даже для сложного на первый взгляд ряда не составляет трудности расписать его в развернутом виде:
Пример 3
Записать первые три члена ряда
На самом деле задание выполняется устно: мысленно подставляем в общий член ряда сначала , потом и . В итоге:
ответ оставляем в таком виде, полученные члены ряда лучше не упрощать, то есть не выполнять действия: , , . Почему? ответ в виде гораздо проще и удобнее проверять преподавателю.
Иногда встречается обратное задание
Пример 4
Записать сумму в свёрнутом виде с общим членом ряда
Здесь нет какого-то четкого алгоритма решения, закономерность нужно увидеть.
В данном случае:
Для проверки полученный ряд можно «расписать обратно» в развернутом виде.
А вот пример чуть сложнее для самостоятельного решения:
Пример 5
Записать сумму в свёрнутом виде с общим членом ряда
Выполнить проверку, снова записав ряд в развернутом виде
Объяснение:sdg