ОДЗ - область допустимых значений. Т.е. когда мы сокращаем что-либо в числителе и знаменателе, то мы можем потом включить это число в решения. То есть, например, в первом номере мы сокращаем скобку y-2. Тем самым мы сознательно "пропускаем" в решения (если бы мы не просто упрощали, а решали такое уравнение). Но эта скобка стоит у нас в знаменателе. А знаменатель не может быть равен 0, т.к. на 0 делить нельзя. Значит нужно исключить решение такого уравнения: y-2=0, т.е. y не равен 2. В первом номере скобку y^2+4 мы не выносим в ОДЗ, потому что если мы будем решать такое уравнение: y^2+4=0, то увидим, что оно никогда не будет равно 0. Квадрат любого числа - число неотрицательное по определению, а неотрицательное+положительное=положительное, т.е. не равное 0. Поэтому эту скобку мы не вносим в ОДЗ. Во втором номере мы сокращаем a^2, т.е. автоматически "пропускаем" a=0. Значит нужно его исключить. Также мы сокращаем скобку a-1, значит нужно исключить решение уравнения a-1=0, т.е. a не равно 1.
нет
Объяснение:
2x² +2x +1 -7y² = 2007 ⇔ 2x²+2x -2006 = 7y² ( 1 )
так как левая часть равенства ( 1 ) - четное число , то и правая
часть кратна 2 ⇒ 7y² делится на 2 ⇒ y делится на 2 ⇒
y = 2k ; k∈Z , подставим в (1) вместо y число 2к :
2x²+2x -2006 =28k² ⇒ x²+x -14k² = 1003 или :
x(x+1) -14k² = 1003 ( 2 )
x и ( x +1 ) - 2 последовательных натуральных числа ⇒ одно
из них обязательно четно ⇒ x(x+1) - четно ⇒ x(x+1) -14k² - четно
, как разность двух четных чисел , но 1003 - нечетное число
⇒ равенство ( 2) невозможно ⇒ уравнение (1) не имеет
решений в целых числах
1) y-2. ОДЗ: y≠2
2) a-1. ОДЗ: a≠1
Объяснение:
№1. (y+2+):=:==y-2. ОДЗ: y≠2
№2. (a+1+):=:==a-1. ОДЗ: a≠1
ОДЗ - область допустимых значений. Т.е. когда мы сокращаем что-либо в числителе и знаменателе, то мы можем потом включить это число в решения. То есть, например, в первом номере мы сокращаем скобку y-2. Тем самым мы сознательно "пропускаем" в решения (если бы мы не просто упрощали, а решали такое уравнение). Но эта скобка стоит у нас в знаменателе. А знаменатель не может быть равен 0, т.к. на 0 делить нельзя. Значит нужно исключить решение такого уравнения: y-2=0, т.е. y не равен 2. В первом номере скобку y^2+4 мы не выносим в ОДЗ, потому что если мы будем решать такое уравнение: y^2+4=0, то увидим, что оно никогда не будет равно 0. Квадрат любого числа - число неотрицательное по определению, а неотрицательное+положительное=положительное, т.е. не равное 0. Поэтому эту скобку мы не вносим в ОДЗ. Во втором номере мы сокращаем a^2, т.е. автоматически "пропускаем" a=0. Значит нужно его исключить. Также мы сокращаем скобку a-1, значит нужно исключить решение уравнения a-1=0, т.е. a не равно 1.