- квадратичная функция. График парабола => Сначала находим вершину. Пусть А(m;n) - вершина параболы => m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д. 1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0 2)При у=10 х=-2; при у=6 х=0; при у=0 х=3 3)у наиб=n (в вершине) =8 4) Возрастает (большему значению х соответствует большее значение у) на промежутке (-∞;1]; убывает (большему значению х соответствует меньшее значение у) на промежутке [1;+∞) 5)Аргумент - х. При у=0 х=-1 и 3=> y>0 при х∈(-1;3) y<0 при x∈(-∞;-1)U(3;+∞)
Пусть скорость течения реки - х км/ч Вверх по реке - это значит плывет против течения... S=6 км проплыл сначала. Скорость лодки в стоячей воде 90 м/мин = (90*60) /1000 км/час = = 5,4 км/час Время после отправления из N это t=4 часа 30 минут= 4,5 ч Составим уравнение 6 / (5,4-х) + 6 / х = 4,5 6х + 6* (5,4-х) = 4,5х* (5,4-х) 324 + 45x^2 - 243x = 0 5x^2 - 27 + 36 = 0 полное квадратное уравнение. D = 27² - 4* 5* 36 = 729-720=9 x1 = (27-3) /10 = 2,4 км/ч x2 = 3 км/час Задача имеет 2 решения х=2,4 км/ч и х=3 км/ч
Сначала находим вершину. Пусть А(m;n) - вершина параболы =>
m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д.
1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0
2)При у=10 х=-2; при у=6 х=0; при у=0 х=3
3)у наиб=n (в вершине) =8
4) Возрастает (большему значению х соответствует большее
значение у) на промежутке (-∞;1];
убывает (большему значению х соответствует меньшее
значение у) на промежутке [1;+∞)
5)Аргумент - х. При у=0 х=-1 и 3=>
y>0 при х∈(-1;3)
y<0 при x∈(-∞;-1)U(3;+∞)
Вверх по реке - это значит плывет против течения...
S=6 км проплыл сначала.
Скорость лодки в стоячей воде 90 м/мин = (90*60) /1000 км/час =
= 5,4 км/час
Время после отправления из N это t=4 часа 30 минут= 4,5 ч
Составим уравнение
6 / (5,4-х) + 6 / х = 4,5
6х + 6* (5,4-х) = 4,5х* (5,4-х)
324 + 45x^2 - 243x = 0
5x^2 - 27 + 36 = 0 полное квадратное уравнение.
D = 27² - 4* 5* 36 = 729-720=9
x1 = (27-3) /10 = 2,4 км/ч
x2 = 3 км/час
Задача имеет 2 решения х=2,4 км/ч и х=3 км/ч