S = a^2 - формула площади квадрата ("а" в квадрате) ^ - условный знак возведения в степень (а+b)^2 = a^2 + 2ab + b^2 - формула сокращённого умножения
Пусть а (см) - сторона второго квадрата, тогда а+13 (см) - сторона первого квадрата. Площадь первого квадрата на 351 кв.см больше площади второго квадрата. Уравнение: (а+13)^2 - a^2 = 351 a^2 + 2a*13 + 13^2 - a^2 = 351 26a + 169 = 351 26a = 351 - 169 26a = 182 а = 182 : 26 а = 7 (см) - сторона второго квадрата 7 + 13 = 20 (см) - сторона первого квадрата Проверка: 20*20 - 7*7 = 400 - 49 = 351 ответ: 20 см.
Дано :
ΔАВС - равнобедренный (АВ = ВС).
D ∈ AB, Е ∈ ВС.
АЕ ∩ CD = О.
∠ACD = ∠CAE.
Доказать :
AD = CE.
Доказательство :
Рассмотрим ΔАОС.
Если в треугольнике два угла равны, то он - равнобедренный.Следовательно, ΔАОС - равнобедренный. Причём АО = ОС (боковые стороны), так как лежат против равных углов в одном треугольнике.
Рассмотрим ΔАВС.
В равнобедренном треугольнике углы при основании равны.Так как ΔАВС - равнобедренный (по условию), то ∠А = ∠С.
Тогда -
∠А = ∠DAO + ∠CAE
∠C = ∠ECO + ∠ACD
Учитывая равенство ∠ACD = ∠CAE и ∠А = ∠С, получаем, что ∠DAO = ∠ECO.
Рассмотрим ΔDOA и ΔEOC.
∠DOA = ∠EOC как вертикальные
∠DAO = ∠ECO по выше сказанному
АО = ОС по выше сказанному
Тогда ΔDOA = ΔEOC по стороне и двум прилежащим к ней углам (второй признак равенства треугольников).
В равных треугольниках против равных углов лежат равные стороны.Так как ∠DOA = ∠EOC, то по выше сказанному AD = CE.
Что требовалось доказать.
^ - условный знак возведения в степень
(а+b)^2 = a^2 + 2ab + b^2 - формула сокращённого умножения
Пусть а (см) - сторона второго квадрата, тогда а+13 (см) - сторона первого квадрата. Площадь первого квадрата на 351 кв.см больше площади второго квадрата. Уравнение:
(а+13)^2 - a^2 = 351
a^2 + 2a*13 + 13^2 - a^2 = 351
26a + 169 = 351
26a = 351 - 169
26a = 182
а = 182 : 26
а = 7 (см) - сторона второго квадрата
7 + 13 = 20 (см) - сторона первого квадрата
Проверка: 20*20 - 7*7 = 400 - 49 = 351
ответ: 20 см.