Расстояние от старта до финиша равное 20 км, первый спортсмен пробегает на 3 часа быстрее второго. Найти скорость второго спортсмена, если она на 2 км/ч меньше скорости первого.
Исследовать функцию: • Область определения функции:
• Точки пересечения с осью Ох и Оу: Точки пересечения с осью Ох: нет. Точки пересечения с осью Оу: Нет. • Периодичность функции. Функция не периодическая. • Критические точки, возрастание и убывание функции: 1. Производная функции:
2. Производная равна 0.
___-__(-1)____+__(0)____-___(1)___+___
х=-1 - точка минимума х=1 - точка минимума
f(1) = 1 - Относительный минимум f(-1) = -1 - Относительный минимум
Функция возрастает на промежутке: x ∈ (-1;0) и (1;+∞), а убывает на промежутке: (-∞;-1) и (0;1).
за х км/час примем собственную скорость теплохода;
(х+2)км/час скорость теплохода по течению;
(х-2)км/час- скорость теплохода против течения;
126/(х+2)часов-время пути теплохода по течению;
126/(х-2)часов-время пути теплохода против течения.
В задаче сказано, что на путь туда и обратно и 8 часов остановки теплоход потратил сутки. Отсюда равенство: 126/(х+2)+126/(х-2)+8=24.
126(х+2)+126(х-2)=16(х+2)(х-2); 126х+252+126х-252=16(х^2-4);
16х^2-252х-64=0; 4х^2-63х-16=0. Решив это ур-ние через дискрименант, найдем х=16(км/час)-это собственная скорость теплохода.
• Область определения функции:
• Точки пересечения с осью Ох и Оу:
Точки пересечения с осью Ох: нет.
Точки пересечения с осью Оу: Нет.
• Периодичность функции.
Функция не периодическая.
• Критические точки, возрастание и убывание функции:
1. Производная функции:
2. Производная равна 0.
___-__(-1)____+__(0)____-___(1)___+___
х=-1 - точка минимума
х=1 - точка минимума
f(1) = 1 - Относительный минимум
f(-1) = -1 - Относительный минимум
Функция возрастает на промежутке: x ∈ (-1;0) и (1;+∞), а убывает на промежутке: (-∞;-1) и (0;1).
• Точка перегиба:
Очевидно что точки перегиба нет, т.к.
• Вертикальные асимптоты:
• Горизонтальные асимптоты:
• Наклонные асимптоты:
График приложен