сумма n последовательных нечетных натуральных чисел при n>1
1+3+5+7+...+(2n-1)=n^2
Доказательство методом математической индукции
База индукции
n=2. 1+3=2^2
Гипотеза индукции
Пусть для n=k утверждение выполняется, т.е. выполняется
1+3+5+7+...+(2k-1)=k^2
Индукционный переход. Докажем, что тогда выполняется утверждение и для n=k+1, т.е, что выполняется
1+3+5+7+...+(2k-1)+(2K+1)=(k+1)^2
1+3+5+7+...+(2k-1)+(2K+1)=используем гипотезу МИ=k^2+(2k+1)=k^2+2k+1=используем формлу квадрату двучлена=(k+1)^2, что и требовалось доказать.
По методому математической индукции формула справедлива.
Число n^2 при n>1 zвляется составным, оно делится на 1,n,n^2.
А значит сумма n последовательных нечетных натуральных чисел при n>1 является составным числом. Доказано
Объяснение:
1).
а). 5·(a-3) = 5a-15.
б). а•(5+2а) = 2a²+5a.
в). 0,3х (2х-7) = 0,6x²-2,1x.
г). -0,2х (5х-4) = -1x²+0,8x.
д). 2а•(а²-5а+9) = 2a³-10a²+18a.
е). 3а²/(7-6а+5а) = 3а²/7-a.
ж). -5х (0,2х-4) = -1x²+20x.
з). 4х (3-2х)+3(2х²-х)-(х-3) = -2x²+8x-3.
2).
а). (а+5)•(3а+1) = 3a²+16a+5.
б). (х-5)•(2х-3) = 2x²-13x+15.
в). (2-х)•(х-1)+(х+1)•(х+2) = 3x²+x+2.
г). (3х+3)•(5-х)-(5х-5)•(3х-2) = -18x²-13x+25.
3).
а). 2х-12. Вынесем 2 за скобки и получим: 2(x-6).
б). 7х-14х². Вынесем за скобки 7x и получим: 7x(1-2x).
в). 5х²-10х+15. (Насколько вы понимаете, мы опять будем что то выносить за скобки.) 5(x²-2x+3).
г). 6х³-12х²+18х. Нетрудно догадаться что мы сейчас сделаем. 6x(x²-2x+3).
д). 4•(х-1)-х(х-1). На этом пункте мы вынесем за скобку (х-1) и получим: (x-1)·(4-x).
е). 3•(х-3)+х(3-х). Без комментариев. (x-3)·(3+x).
ж) х³+6х²-3х-18. этот пример мы разобьём на две скобки:
(х³+6х²)+(-3х-18) = x²(x+6)-3(x+6) = (x+6)·(x²-3).
з). х³-5х²-5х+25 = (х³-5х²)+(-5х+25) = x²(x-5)-5(x-5) = (x-5)·(x²-5).
сумма n последовательных нечетных натуральных чисел при n>1
1+3+5+7+...+(2n-1)=n^2
Доказательство методом математической индукции
База индукции
n=2. 1+3=2^2
Гипотеза индукции
Пусть для n=k утверждение выполняется, т.е. выполняется
1+3+5+7+...+(2k-1)=k^2
Индукционный переход. Докажем, что тогда выполняется утверждение и для n=k+1, т.е, что выполняется
1+3+5+7+...+(2k-1)+(2K+1)=(k+1)^2
1+3+5+7+...+(2k-1)+(2K+1)=используем гипотезу МИ=k^2+(2k+1)=k^2+2k+1=используем формлу квадрату двучлена=(k+1)^2, что и требовалось доказать.
По методому математической индукции формула справедлива.
Число n^2 при n>1 zвляется составным, оно делится на 1,n,n^2.
А значит сумма n последовательных нечетных натуральных чисел при n>1 является составным числом. Доказано
Объяснение:
1).
а). 5·(a-3) = 5a-15.
б). а•(5+2а) = 2a²+5a.
в). 0,3х (2х-7) = 0,6x²-2,1x.
г). -0,2х (5х-4) = -1x²+0,8x.
д). 2а•(а²-5а+9) = 2a³-10a²+18a.
е). 3а²/(7-6а+5а) = 3а²/7-a.
ж). -5х (0,2х-4) = -1x²+20x.
з). 4х (3-2х)+3(2х²-х)-(х-3) = -2x²+8x-3.
2).
а). (а+5)•(3а+1) = 3a²+16a+5.
б). (х-5)•(2х-3) = 2x²-13x+15.
в). (2-х)•(х-1)+(х+1)•(х+2) = 3x²+x+2.
г). (3х+3)•(5-х)-(5х-5)•(3х-2) = -18x²-13x+25.
3).
а). 2х-12. Вынесем 2 за скобки и получим: 2(x-6).
б). 7х-14х². Вынесем за скобки 7x и получим: 7x(1-2x).
в). 5х²-10х+15. (Насколько вы понимаете, мы опять будем что то выносить за скобки.) 5(x²-2x+3).
г). 6х³-12х²+18х. Нетрудно догадаться что мы сейчас сделаем. 6x(x²-2x+3).
д). 4•(х-1)-х(х-1). На этом пункте мы вынесем за скобку (х-1) и получим: (x-1)·(4-x).
е). 3•(х-3)+х(3-х). Без комментариев. (x-3)·(3+x).
ж) х³+6х²-3х-18. этот пример мы разобьём на две скобки:
(х³+6х²)+(-3х-18) = x²(x+6)-3(x+6) = (x+6)·(x²-3).
з). х³-5х²-5х+25 = (х³-5х²)+(-5х+25) = x²(x-5)-5(x-5) = (x-5)·(x²-5).