Итак, нам дан треугольник ABC, в нём BM - биссектриса, а прямая XK пересекает BM в точке O, сторону BC - в точке K, причём XK _|_ BM. X я обозначил, можно сказать, просто так, для решения это нам не нужно. Итак, рассмотрим треугольник BKM: у него KO - медиана (т.к. O - середина BM) и высота (т.к. OK _|_ BM), значит треугольник BKM - равнобедренный с основанием BM. У равнобедренного треугольника углы при основании равны, то есть <KBM = <KMB, но при этом <KBM=<XBM (т.к. BM - биссектриса по условию), значит <KMB = <KBM = <XBM, т.е. <KMB = <XBM, но эти углы накрест лежащие при прямых AB и KM и секущей BM, что значит, что прямая AB || KM по 1-му признаку параллельности прямых, что и требовалось доказать
вот:
Объяснение:
1) Дана система уравнений, которую будем решать методом подстановки.
7х + 3у = 43;
4х - 3у = 67;
2) Выразим переменную 3у через х в первом выражении:
3у = 43 - 7х;
4х - 3у = 67;
3) Подставим переменную 3у во второе выражение:
4х - (43 - 7х) = 67;
4) Раскроем скобки:
4х - 43 + 7х = 67
5) Упорядочим уравнение:
11х = 110
6) Найдем х:
х = 110 / 11 = 10;
8) Найдем у, подставив найденную переменную х в любое из выражений:
70 + 3у = 43;
3у = -27;
у = -27 / 3 = -9.
ответ: переменная х = 10, переменная у = -9.