Чтобы дробь была < 0, надо , чтобы числитель и знаменатель имели разные знаки. Учтём ещё ОДЗ и получим 2 системы неравенств: а) log0,3log6(x^2+x) >0 log6(x^2+x) <1 x^2 +x < 6 (-3;2) x + 4 <0 x < - 4 x < -4 x < -4 x^2 +x >0 (-беск.;-1) и (0; + беск.) ( -беск.;-1) и (0; + беск.) ( -беск.;-1) и (0; + беск.) нет решений б)log0,3log6(x^2+x) <0 log6(x^2+x) >1 (- беск.;-3) и ( 2; +беск.) x + 4 > 0 x > -4 x>-4 x^2 +x >0 (-беск.;-1) и (0; + беск.) ( -беск.;-1) и (0; + беск.) ответ:(-4;3)
а) log0,3log6(x^2+x) >0 log6(x^2+x) <1 x^2 +x < 6 (-3;2)
x + 4 <0 x < - 4 x < -4 x < -4
x^2 +x >0 (-беск.;-1) и (0; + беск.) ( -беск.;-1) и (0; + беск.) ( -беск.;-1) и (0; + беск.)
нет решений
б)log0,3log6(x^2+x) <0 log6(x^2+x) >1 (- беск.;-3) и ( 2; +беск.)
x + 4 > 0 x > -4 x>-4
x^2 +x >0 (-беск.;-1) и (0; + беск.) ( -беск.;-1) и (0; + беск.)
ответ:(-4;3)
Плот проплыл 36 км за 36 / 4 = 9 часов . По условию задачи имеем : 126/(х + 4) + 126/ (х - 4) = 9 - 1
126 *(х - 4) + 126 * (х + 4) = 8 * (x^2 - 16)
126x - 504 + 126x + 504 = 8x^2 - 128
8x^2 - 252x - 128 = 0
2x^2 - 63x - 32 = 0 . Найдем дискриминант D квадратного уравнения и найдем корни этого уравнения . D = 63^2 - 4 * 2 * (- 32) = 3969 + 252 = 4225 . Корень квадратный из дискриминанта : 1- ый = (-(-63 + 65)) /2 * 2= 128 / 4 = 32 .; 2 - ой = (-(-63) - 65)/ 2*2 = - 2 / 4 = - 0,5 . Второй корень не подходит , так как скорость не может быть меньше 0 .
Сбственная скорость равна : 32 км/час