Пусть функции заданы на промежутке [-9; 9]. (см. рис.) В каких промежутках она возрастает? В каких промежутках она убывает? Найдите её локальный максимум и локальный минимум, наибольшее и наименьшее значения: AV y = f(x) y = f(x)
Это задача на совместную работу A=P*t; P=A/t; t=A/P A - работа P - производительность, то есть работа, выполняемая за единицу времени t - время на выполнение работы Когда ничего конкретно о работе не сказано, вся работа принимается за единицу. 1/8 - совместная производительность 1-3/14=11/14 - выполненная работа двумя рабочими x - время, за которое может выполнить работу первый рабочий y - время, за которое может выполнить работу второй рабочий 1/x - производительность первого рабочего 1/y - производительность второго рабочего 5/x - работа, выполненная первым рабочим 8/y - работа, выполненная вторым рабочим Система: 1/x+1/y=1/8 5/x+8/y=11/14 Замена: 1/x=u; 1/y=v⇒ u+v=1/8 5u+8v=11/14 u=1/8-v 5(1/8-v)+8v=11/14 5/8-5v+8v=11/14 3v=44/56-35/56; 3v=9/56; v=3/56; u=1/8-3/56=7/56-3/56=4/56=1/14 1/x=1/14⇒x=14 1/y=3/56⇒y=56/3 ответ: 14дней; (18+2/3)дня
Решение: х²+2√(х²+19)=44 2√(х²+19)=44-х² Чтобы избавиться от иррациональности возведём обе части уравнения в квадрат: 4(х²+19)=1936-88х²+х^4 4x^2+76=1936-88x^2+x^4 x^4-88x^2-4x^2+1936-76=0 x^4-92x^2+1860=0 Обозначим х^2=у, тогда уравнение примет вид: y^2-92y+1860=0 y1,2=92/2+-√(2116-1860)=46+-√256=46+-16 y1=46+16=62 y2=46-16=30 Подставим данные значения (у) в x^2=y x^2=62 x1,2=+-√62 x1=√62 x2=-√62
A=P*t; P=A/t; t=A/P
A - работа
P - производительность, то есть работа, выполняемая за единицу времени
t - время на выполнение работы
Когда ничего конкретно о работе не сказано, вся работа принимается за единицу.
1/8 - совместная производительность
1-3/14=11/14 - выполненная работа двумя рабочими
x - время, за которое может выполнить работу первый рабочий
y - время, за которое может выполнить работу второй рабочий
1/x - производительность первого рабочего
1/y - производительность второго рабочего
5/x - работа, выполненная первым рабочим
8/y - работа, выполненная вторым рабочим
Система:
1/x+1/y=1/8
5/x+8/y=11/14
Замена: 1/x=u; 1/y=v⇒
u+v=1/8
5u+8v=11/14
u=1/8-v
5(1/8-v)+8v=11/14
5/8-5v+8v=11/14
3v=44/56-35/56; 3v=9/56; v=3/56; u=1/8-3/56=7/56-3/56=4/56=1/14
1/x=1/14⇒x=14
1/y=3/56⇒y=56/3
ответ: 14дней; (18+2/3)дня
х²+2√(х²+19)=44
2√(х²+19)=44-х²
Чтобы избавиться от иррациональности возведём обе части уравнения в квадрат:
4(х²+19)=1936-88х²+х^4
4x^2+76=1936-88x^2+x^4
x^4-88x^2-4x^2+1936-76=0
x^4-92x^2+1860=0
Обозначим х^2=у, тогда уравнение примет вид:
y^2-92y+1860=0
y1,2=92/2+-√(2116-1860)=46+-√256=46+-16
y1=46+16=62
y2=46-16=30
Подставим данные значения (у) в x^2=y
x^2=62
x1,2=+-√62
x1=√62
x2=-√62
x^2=30
x3,4=+-√30
x3=√30
x4=-√30
Произведение корней уравнения равно:
1. sqrt62 * -sqrt62=-62
2. sqrt30* - sqrt30=-30
(-62)*(-30)=1860
ответ: 1860