sin(x)1+cos(x)+1+cos(x)sin(x)
Тригонометрия Примеры
Тригонометрия
Упростить (sin(x))/(1+cos(x))+(1+cos(x))/(sin(x))
Для записи sin(x)1+cos(x)
в виде дроби с общим знаменателем, умножим ее на sin(x)sin(x)
.
sin(x)1+cos(x)⋅sin(x)sin(x)+1+cos(x)sin(x)
Для записи 1+cos(x)sin(x)
в виде дроби с общим знаменателем, умножим ее на 1+cos(x)1+cos(x)
sin(x)1+cos(x)⋅sin(x)sin(x)+1+cos(x)sin(x)⋅1+cos(x)1+cos(x)
Запишем каждое выражение с общим знаменателем (1+cos(x))sin(x)
, умножив на подходящий множитель 1
sin(x)sin(x)sin(x)(1+cos(x))+(1+cos(x))(1+cos(x))sin(x)(1+cos(x))
Скомбинируем числители с общим знаменателем.
sin(x)sin(x)+(1+cos(x))(1+cos(x))sin(x)(1+cos(x))
Упростим числитель.
2(1+cos(x))sin(x)(1+cos(x))
Сократить общий множитель 1+cos(x)
2sin(x)
Разложим дроби.
21⋅1sin(x)
Преобразование из 1sin(x)
в csc(x)
21csc(x)
Делим 2
на 1
2csc(x)
а) 2 sin 27° · cos 9° = 2 · 0,5 (sin (27° + 9°) + sin (27° - 9°)) = sin 36° + sin 18°
д) cos(x + 1) · cos(x - 1) = 0,5 (cos (х + 1 + х - 1) + cos (x + 1 - x + 1)) =
= 0.5 cos 2x + 0.5 cos 2
б) -2sin 25° · sin15° = -2 · 0.5 (cos (25° - 15°) - cos (25° + 15°)) = cos 40° - cos 10°
e) 2 sin(α + β) · cos(α - β) = 2 · 0.5 (sin (α + β + α - β) + sin (α + β - α + β)) =
= sin 2α + sin 2β
в) 2 sin α · cos 3α = 2 · 0,5 (sin (α + 3α) + sin (α - 3α)) = sin 4α - sin 2α
ж) sin (y + φ) · sin (y - φ) = 0.5 (cos (y + φ - y + φ) - cos ( y + φ + y - φ)) =
= 0.5 cos 2φ - 0.5 cos 2y
г) 2 cos 2α · cos α = 2 · 0,5 · (cos (2α + α) + cos (2α - α)) = cos 3α + cos α
з) sin (2x + 3) · sin (x - 3); = 0,5 ·(cos (2x + 3 - x + 3) - cos (2x + 3 + x - 3)) =
= 0.5 cos (x + 6) - 0.5 cos 3x
sin(x)1+cos(x)+1+cos(x)sin(x)
Тригонометрия Примеры
Тригонометрия
Упростить (sin(x))/(1+cos(x))+(1+cos(x))/(sin(x))
sin(x)1+cos(x)+1+cos(x)sin(x)
Для записи sin(x)1+cos(x)
в виде дроби с общим знаменателем, умножим ее на sin(x)sin(x)
.
sin(x)1+cos(x)⋅sin(x)sin(x)+1+cos(x)sin(x)
Для записи 1+cos(x)sin(x)
в виде дроби с общим знаменателем, умножим ее на 1+cos(x)1+cos(x)
.
sin(x)1+cos(x)⋅sin(x)sin(x)+1+cos(x)sin(x)⋅1+cos(x)1+cos(x)
Запишем каждое выражение с общим знаменателем (1+cos(x))sin(x)
, умножив на подходящий множитель 1
.
sin(x)sin(x)sin(x)(1+cos(x))+(1+cos(x))(1+cos(x))sin(x)(1+cos(x))
Скомбинируем числители с общим знаменателем.
sin(x)sin(x)+(1+cos(x))(1+cos(x))sin(x)(1+cos(x))
Упростим числитель.
2(1+cos(x))sin(x)(1+cos(x))
Сократить общий множитель 1+cos(x)
.
2sin(x)
Разложим дроби.
21⋅1sin(x)
Преобразование из 1sin(x)
в csc(x)
.
21csc(x)
Делим 2
на 1
.
2csc(x)
а) 2 sin 27° · cos 9° = 2 · 0,5 (sin (27° + 9°) + sin (27° - 9°)) = sin 36° + sin 18°
д) cos(x + 1) · cos(x - 1) = 0,5 (cos (х + 1 + х - 1) + cos (x + 1 - x + 1)) =
= 0.5 cos 2x + 0.5 cos 2
б) -2sin 25° · sin15° = -2 · 0.5 (cos (25° - 15°) - cos (25° + 15°)) = cos 40° - cos 10°
e) 2 sin(α + β) · cos(α - β) = 2 · 0.5 (sin (α + β + α - β) + sin (α + β - α + β)) =
= sin 2α + sin 2β
в) 2 sin α · cos 3α = 2 · 0,5 (sin (α + 3α) + sin (α - 3α)) = sin 4α - sin 2α
ж) sin (y + φ) · sin (y - φ) = 0.5 (cos (y + φ - y + φ) - cos ( y + φ + y - φ)) =
= 0.5 cos 2φ - 0.5 cos 2y
г) 2 cos 2α · cos α = 2 · 0,5 · (cos (2α + α) + cos (2α - α)) = cos 3α + cos α
з) sin (2x + 3) · sin (x - 3); = 0,5 ·(cos (2x + 3 - x + 3) - cos (2x + 3 + x - 3)) =
= 0.5 cos (x + 6) - 0.5 cos 3x