Прямоугольный участок размером 40×65 покрывается плитками 4 ×5 . Можно ли покрыть этот участок ровными рядами плитками 25×5 ? 13×6 ? Обоснуйте свой ответ. Если да, то сколько плиток для этого потребуется?
1) 6+10+11=27(см)-P-ровностороннего триугольника 2) 27:3=9(см)-будет равна сторона ровностороннего триугольника ответ:9 сантиметров будет равна сторона ровностороннего триугольника теперь объясню как делать объяснение: в 1 действии необходимо найти периметр формула(P=a+b+c) во втором действии мы делим периметр в этой задаче он равен 27 (P=27) делим на 3( поскольку сторон у треугольника 3) будет 9 и так как триугольник ровносторонний любая сторона этого триугальника будет равна 9 сантиметров
x1 + x2 = -p
x1 * x2 = 36
Используем условие: один на 4 меньше другого.
Здесь нумерация корней не имеет значения, поэтому запишем так:
x1 - x2 = 4
Получаем систему:
x1 + x2 = -p
x1 * x2 = 36
x1 = x2 + 4
Из последнего уравнения подставим вместо х1 во второе уравнение х2 + 4
(х2 + 4)*х2 = 36
х2 ^2 + 4 x2 - 36 = 0
D/4 = 4 + 36 = 40
x2 = -2 +- sqrt(40) = -2 +- 2sqrt(10)
находим х1: x1 = x2 + 4 = -2 +-2sqrt(10) + 4 = 2 +- 2 sqrt(10)
Получаем две пары корней:
х1 = 2 + 2 sqrt(10)
x2 = -2 + 2sqrt(10)
x1 = 2 - 2sqrt(10)
x2 = -2 - 2sqrt(10)
Теперь подставляем в первое уравнение: х1 + х2 = -p
Для первой пары: x1 + x2 = 2sqrt(10)
Для второй: x1 + x2 = -4sqrt(10)
-p = 2sqrt(10) или -p = -4sqrt(10)
p = -2sqrt(10) p = 4sqrt(10)
ответ -2sqrt(10)