Задача. Как-то лошадь и мул вместе вышли из дома, Их хозяин поклажей большой нагрузил, Долго-долго тащились дорогой знакомой, из последней уже выбиваяся сил. «Тяжело мне идти» – лошадь громко стонала. Мул с иронией молвил (нес он тоже немало) «Неужели, скажи, я похож на осла? Может, я и осел, но вполне понимаю: Моя ноша значительно больше твоей. Вот представь: я мешок у тебя забираю, И мой груз стал в два раза, чем твой, тяжелей. А вот если тебе мой мешок перебросить, Одинаковый груз наши спины б согнул» Сколько ж было мешков у страдалицы-лошади?
Их хозяин поклажей большой нагрузил,
Долго-долго тащились дорогой знакомой,
из последней уже выбиваяся сил.
«Тяжело мне идти» – лошадь громко стонала.
Мул с иронией молвил (нес он тоже немало)
«Неужели, скажи, я похож на осла?
Может, я и осел, но вполне понимаю:
Моя ноша значительно больше твоей.
Вот представь: я мешок у тебя забираю,
И мой груз стал в два раза, чем твой, тяжелей.
А вот если тебе мой мешок перебросить,
Одинаковый груз наши спины б согнул»
Сколько ж было мешков у страдалицы-лошади?
Решение:
2(х – 1) = у + 1,
2x - 2- y=1,
2x-y =3
х + 1 = у – 1; x - y =-2; x=5, 5-y=-2
y=5+2
y=7 ответ: лошадь несла 5 мешков, мул-7 мешков.
sin3A = sin(A+2A) = sinAcos2A + cosAsin2A = sinA(2cos^2A-1) + cosA(2sinAcosA)
= 2sinAcos^2A - sinA + 2sinAcos^2A
cos3A = cos(A+2A) = cosAcos2A - sinAsin2A = cosA(2cos^2A-1) - sinA(2sinAcosA)
= 2cos^3A-cosA - 2sin^2AcosA
Hence the left side of your equation equals
(2sinAcosA+4sinAcos^2A) / (2cos^2A - 1 + 2cos^3A - 2sin^2AcosA), now replace sin^2A by 1-cos^2A
= (2sinAcosA+4sinAcos^2A) / (4cos^3A + 2cos^2A -2cosA - 1)
= 2sinAcosA(1+2cosA) / ((2cos^2A-1)(1+2cosA))
= 2sinAcosA / (2cos^2A - 1)
= sin2A / cos2A
= tan2A