∠1 + ∠2 = 180 градусов как односторонних углов. ∠2 - ∠1 = 40 градусов. 180 - 40 = 140 градусов 140:2 = 70 градусов - это ∠1 ∠2 = 180-70=110 градусов. ∠3 = ∠1 = 70 градусов - вертикальный к ∠1 ∠4 = ∠2 = 110 градусов - вертикальный к ∠2 ∠5 = ∠2 = 110 градусов как соответственный угол с ∠2 ∠6 = ∠1 = 70 градусов тоже как соответственный угол с ∠1 ∠8 = ∠5 = 110 градусов как вертикальные углы ∠7 = ∠6 = 70 градусов как вертикальный
Обозначение углов такое: на верхней прямой при пересечении слева наверху ∠5, далее по часовой стрелке 3,8.1 углы. На нижней прямой слева наверху ∠2, далее по часовой стрелке 7,4,6 углы. Проставь номера углов сам, как тебе удобно.
ОДЗ: x²-2x>0 x(x-2)>0 x>0 x>2 x∈(-∞;0)U(2;+∞) 10x-30>0 x>3 ⇒x∈(3;+∞)
x²-3x=10x-30
x²-13x+30=0 В=49
х₁=10 х₂=3 x₂∉ по ОДЗ
ответ:х=10.
log₄(x²+5x)=log₄(9x+32)
ОДЗ: x²+5x>0 x(x+5)>0 x∈(-∞;-5)U(0;+∞) 9x+32>0 x>3⁵/⁹ ⇒
x∈(-∞;-5)U(3⁵/₉;+∞)
x²+5x=9x+32
x²-4x-32=0 D=144
x₁=8 x₂=-4 x₂∉ по ОДЗ.
ответ: х=8.
log₉(x²-9x)=log₉(72-8x)
ОДЗ: x²-9x>0 x(x-9)>0 x∈(-∞;0)U(9;+∞) 72-8x>0 x<9 ⇒ x∈(-∞;0).
x²-9x=72-8x
x²-x-72=0 D=289
x₁=-8 x₂=9 x₂∉ по ОДЗ.
ответ: х=-8.
∠2 - ∠1 = 40 градусов.
180 - 40 = 140 градусов
140:2 = 70 градусов - это ∠1
∠2 = 180-70=110 градусов.
∠3 = ∠1 = 70 градусов - вертикальный к ∠1
∠4 = ∠2 = 110 градусов - вертикальный к ∠2
∠5 = ∠2 = 110 градусов как соответственный угол с ∠2
∠6 = ∠1 = 70 градусов тоже как соответственный угол с ∠1
∠8 = ∠5 = 110 градусов как вертикальные углы
∠7 = ∠6 = 70 градусов как вертикальный
Обозначение углов такое: на верхней прямой при пересечении слева наверху ∠5, далее по часовой стрелке 3,8.1 углы.
На нижней прямой слева наверху ∠2, далее по часовой стрелке 7,4,6 углы. Проставь номера углов сам, как тебе удобно.