Объяснение:
1) Числа образуют арифметическую прогрессию с разностью d = 1.
S = (a1+aк)/2 * n, где n - количество, равное 199-101 = 98 чисел.
По-другому формула запишется:
S = (a1 + a1 +(n-1)d)/2 * n = (2a1 + (n-1)d)/2 * n
a1 = 101, n = 98, d = 1
S = (2* 101 + 97 * 1)/2 * 98 = 149 * 98 = 14602
2) Характеристическое свойство геометрической прогрессии:
bn² = bn+1 * bn-1
bn = 2x - 3
bn-1 = x + 1
bn+1 = x + 6
(2x - 3)² = (x + 1)(x + 6) ⇒ 4x² - 12x + 9 = x² + 7x + 6 ⇒ 3x² - 19x + 3 = 0 ⇒ x² - 19/3x + 1 = 0 ⇒ x1 + x2 = 19/3 по теореме Виета.
давайте решим два линейных неравенства 1) 5(3x - 5) > 3(1 + 5x) - 10, 2) 5(4x - 1) < 5(2x + 3) + 2x используя тождественные преобразования.
давайте начнем с открытия скобок в обеих частях неравенства:
1) 5(3x - 5) > 3(1 + 5x) - 10;
5 * 3x - 5 * 5 > 3 * 1 + 3 * 5x - 10;
15x - 25 > 3 + 15x - 10;
группируем подобные в разных частях неравенства:
15x - 15x > 3 - 10 + 25;
x(15 - 15) > 18;
0 > 18.
неравенство не верное, значит нет решения неравенства.
2) 5(4x - 1) < 5(2x + 3) + 2x;
20x - 5 < 10x + 15 + 2x;
20x - 10x - 2x < 15 + 5;
8x < 20;
x < 20 : 8;
x < 2.5.
x принадлежит промежутку (- бесконечность; 2,5).
Объяснение:
1) Числа образуют арифметическую прогрессию с разностью d = 1.
S = (a1+aк)/2 * n, где n - количество, равное 199-101 = 98 чисел.
По-другому формула запишется:
S = (a1 + a1 +(n-1)d)/2 * n = (2a1 + (n-1)d)/2 * n
a1 = 101, n = 98, d = 1
S = (2* 101 + 97 * 1)/2 * 98 = 149 * 98 = 14602
2) Характеристическое свойство геометрической прогрессии:
bn² = bn+1 * bn-1
bn = 2x - 3
bn-1 = x + 1
bn+1 = x + 6
(2x - 3)² = (x + 1)(x + 6) ⇒ 4x² - 12x + 9 = x² + 7x + 6 ⇒ 3x² - 19x + 3 = 0 ⇒ x² - 19/3x + 1 = 0 ⇒ x1 + x2 = 19/3 по теореме Виета.
давайте решим два линейных неравенства 1) 5(3x - 5) > 3(1 + 5x) - 10, 2) 5(4x - 1) < 5(2x + 3) + 2x используя тождественные преобразования.
давайте начнем с открытия скобок в обеих частях неравенства:
1) 5(3x - 5) > 3(1 + 5x) - 10;
5 * 3x - 5 * 5 > 3 * 1 + 3 * 5x - 10;
15x - 25 > 3 + 15x - 10;
группируем подобные в разных частях неравенства:
15x - 15x > 3 - 10 + 25;
x(15 - 15) > 18;
0 > 18.
неравенство не верное, значит нет решения неравенства.
2) 5(4x - 1) < 5(2x + 3) + 2x;
20x - 5 < 10x + 15 + 2x;
20x - 10x - 2x < 15 + 5;
8x < 20;
x < 20 : 8;
x < 2.5.
x принадлежит промежутку (- бесконечность; 2,5).