Объяснение:
4<a<7 и 3<b<5
1) a+b => 4+3<a+b<7+5 => 7<a+b<12;
3) ab => 4*3 <ab<7*5 => 12<ab<35;
5) 2a+7b => 2*4+7*3<2a+7b<2*7+7*5 => 29<2a+7b< 49;
7) 4b/9a => 4*3/9*4<4b/9a<4*5/9*7 => 1/3<4b/9a<20/63.
или
4*3<4b<4*5 => 12<4b<20;
9*4<9a<9*7 => 36<9a<63;
12/36<4b/9a<20.
Всё верно!!
Объяснение:
4<a<7 и 3<b<5
1) a+b => 4+3<a+b<7+5 => 7<a+b<12;
3) ab => 4*3 <ab<7*5 => 12<ab<35;
5) 2a+7b => 2*4+7*3<2a+7b<2*7+7*5 => 29<2a+7b< 49;
7) 4b/9a => 4*3/9*4<4b/9a<4*5/9*7 => 1/3<4b/9a<20/63.
или
4*3<4b<4*5 => 12<4b<20;
9*4<9a<9*7 => 36<9a<63;
12/36<4b/9a<20.
Всё верно!!
-x-sin(-x)=-x+sinx=-(x-sinx)
нечетная
3) x^2-cosx
(-х)²-сos(-x)=x²-cosx
четная
4) x^3+sinx
(-x)³+sin(-x)=-x³-sinx=-(x³+sinx)
нечетная
5) 1-cosx/1+cosx
(1-сos(-x))/(1+cos(-x))=(1-cosx)/(1+cosx)
четная
6) tgx+1/tgx-1
tg(-x)+1)/(tg(-x)-1)=(-tgx+1)/(-tgx-1)=[-(tgx-1)]/[-(tgx+1)]=(tgx-1)/(tgx+1)
ни четная,ни нечетная
7) x+sinx/x-sinx
(-x+sin(-x))/(-x-sin(-x))=(-x-sinx)/(-x+sinx)=[-(x+sinx)]/[-(x-sinx)]=
=(x+sinx)/(x-sinx)
четная
8) x^2-sin^2x/1+sin^2x
[(-x)²-sin²(-x)]/[1+sin²(-x)]=(x²-sin²x)/(1+sin²x)
четная