Есть 12 вариантов выбора книг для покраски по количеству книг в каждом цвете (красный, зеленый, коричневый)
1 1 10
1 2 9
1 3 8
1 4 7
1 5 6
2 2 8
2 3 7
2 4 6
2 5 5
3 3 6
3 4 5
4 4 4
Им соответствуют количество вариантов выбора книг по их числу, например, первому, 12!/(10!*2!)*2!/(1!*1!)=66*2=132. Их надо посчитать.
И каждому набору соответствует число возможных перестановок по цветам. Если все числа в наборе разные, то 3!=6, если две одинаковые, до 3!/(2!*1!)=3, если все одинаковые (последний случай) , то 3!/(3!*0!)=1.
Затем количество вариантов выбора книг для каждого набора надо умножить на количество перестановок в наборе (то есть, для первого получится 132*3=396), и полученные числа сложить. Получится 519156.
/ - дробь.
f(x) = sin(3x/2) + ctg(4x/3).
Поделим данную функцию на две части:
sin(3x/2) и ctg(4x/3). Определим период каждой части,
Для функции sin(3x/2) подходит формула a×sin(bx+c). Периодом здесь будет P = 2π/B = 2π / 3/2 = 4π/3.
Для функции ctg(4x/3) подходит формула a×cot(bx+c). Периодом здесь будет P = π/B = π/ 4/3 = 3π/4.
Чтобы найти период функции из этих двух частей необходимо найти НОК(наименьшее общее кратное).
P1 = 4π/3 = 2×2×π×⅓.
P2 = 3π/4 = 3×π×¼.
Здесь это будет число 12π и соответственно, период функции f(x) = sin(3x/2) + ctg(4x/3) равен 12π.
Есть 12 вариантов выбора книг для покраски по количеству книг в каждом цвете (красный, зеленый, коричневый)
1 1 10
1 2 9
1 3 8
1 4 7
1 5 6
2 2 8
2 3 7
2 4 6
2 5 5
3 3 6
3 4 5
4 4 4
Им соответствуют количество вариантов выбора книг по их числу, например, первому, 12!/(10!*2!)*2!/(1!*1!)=66*2=132. Их надо посчитать.
И каждому набору соответствует число возможных перестановок по цветам. Если все числа в наборе разные, то 3!=6, если две одинаковые, до 3!/(2!*1!)=3, если все одинаковые (последний случай) , то 3!/(3!*0!)=1.
Затем количество вариантов выбора книг для каждого набора надо умножить на количество перестановок в наборе (то есть, для первого получится 132*3=396), и полученные числа сложить. Получится 519156.