1. 450см / 70см ≈ 6,43. Если взять 6 дуг, то длина будет всего 420 см, а надо 450. Значит нужно взять минимум 7 дуг.
2. Потребуется (600 / 30) * 2 = 40 плиток на одну дорожку. На две потребуется 80 плиток. Они продаются в упаковках по 8шт., значит нужно взять минимум 10 упаковок.
3. Так как длина полуокружности = 6, то полная окружность равна 12, а она задаётся формулой C = 2πR, где R - тот радиус (высота теплицы). Искомая величина будет диаметром, то есть 2R. Решив уравнение "12 = 2πR", найдём, что R ≈ 1,9. Значит 2R = 3,8
4. Рассмотрев сторону основания, заметим, что её длина равна 3,8 (из пункта 3.), а дорожки занимают 0,6*2м (их две, они шириной по 0,6м). Значит на грядки остаётся 2,6м. Умножим на длину теплицы, получим 15,6м.
5. Требуемая величина будет равна половине площади окружности радиуса = высоте теплицы. Однако, таких стороны в теплице 2, значит искомая площадь = Sокр. = πR². Ранее вычислив R, подставим и посчитаем. S = 11,3354. Посчитав 15% от этого числа (15% = 1,70031) прибавим их к площади и получим искомую величину. = 13,03571. Округлив до десятых получим ответ 13,0
1) 3x² = 0 ⇒ х = 0
2) 9x² = 81 ⇒ х² = 9 ⇒ х₁= -3 и х₂ = 3
3) x² - 27 = 0 ⇒ х² = 27 ⇒ х = ⁺₋ √27 ⇒ х = ⁺₋ 3√3
4) 0.01x² = 4 ⇒ х² = 400 ⇒ х₁= -20 и х₂ = 20
2. Решить уравнения
1) x² + 5x = 0
х(х + 5) = 0
х₁ = 0 или х₂ = -5
2) 4x² = 0.16x
4x² - 0.16x = 0
4х (х - 0,04) = 0
х₁ = 0 или х₂ = 0,04
3) 9x² + 1 = 0
9x² = - 1 - НЕТ решения (корень из отрицательного числа НЕ существует)
3. Решить уравнения
1) 4x² - 169 = 0
4x² = 169
х² =
х₁ = -6,5 или х₂ = 6,5
2) 25 - 16x² = 0
16х² = 25
х₁ = -1,25 или х₂ = 1,25
3) 2x² - 16 = 0
2х² = 16
х² = 8
х₁ = -2√2 или х₂ = 2√2
4) 3x² = 15
х² = 5
х₁ = -√5 или х₂ = √5
5) 2x² =
х² =
х₁ = -0,25 или х₂ = 0,25
6) 3x² =
3х² =
х² =
х₁ = -1 или х₂ = 1
1. 7
2. 10
3. 3,8
4. 15,6
5. 13,0
Объяснение:
1. 450см / 70см ≈ 6,43. Если взять 6 дуг, то длина будет всего 420 см, а надо 450. Значит нужно взять минимум 7 дуг.
2. Потребуется (600 / 30) * 2 = 40 плиток на одну дорожку. На две потребуется 80 плиток. Они продаются в упаковках по 8шт., значит нужно взять минимум 10 упаковок.
3. Так как длина полуокружности = 6, то полная окружность равна 12, а она задаётся формулой C = 2πR, где R - тот радиус (высота теплицы). Искомая величина будет диаметром, то есть 2R. Решив уравнение "12 = 2πR", найдём, что R ≈ 1,9. Значит 2R = 3,8
4. Рассмотрев сторону основания, заметим, что её длина равна 3,8 (из пункта 3.), а дорожки занимают 0,6*2м (их две, они шириной по 0,6м). Значит на грядки остаётся 2,6м. Умножим на длину теплицы, получим 15,6м.
5. Требуемая величина будет равна половине площади окружности радиуса = высоте теплицы. Однако, таких стороны в теплице 2, значит искомая площадь = Sокр. = πR². Ранее вычислив R, подставим и посчитаем. S = 11,3354. Посчитав 15% от этого числа (15% = 1,70031) прибавим их к площади и получим искомую величину. = 13,03571. Округлив до десятых получим ответ 13,0