Пример 1. В урне 10 белых и 8 черных шаров. Наудачу отобраны 5 шаров. Найти вероятность того, что среди них окажется ровно 2 белых шара.
Подставляем в формулу (1) значения: K=10K=10, N−K=8N−K=8, итого N=10+8=18N=10+8=18, выбираем n=5n=5 шаров, из них должно быть k=2k=2 белых и соответственно, n−k=5−2=3n−k=5−2=3 черных. Получаем:
Пример 2. В урне 5 белых и 5 красных шаров. Какова вероятность вытащить наудачу оба белых шара?
Здесь шары не черные и белые, а красные и белые. Но это совсем не влияет на ход решения и ответ.
Подставляем в формулу (1) значения: K=5K=5 (белых шаров), N−K=5N−K=5 (красных шаров), итого N=5+5=10N=5+5=10 (всего шаров в урне), выбираем n=2n=2 шара, из них должно быть k=2k=2 белых и соответственно, n−k=2−2=0n−k=2−2=0 красных. Получаем:
Все натуральные числа представимы в одном из видов 5k, 5k +-1, 5k + 2, тогда квадраты дают остатки 0, 1 и 4 при делении на 5. 65 делится на 5, тогда, чтобы получился полный квадрат, необходимо, чтобы 2^n давало остаток 0, 1 или 4 при делении на 5.
Вычисляем остатки от деления на 5 степеней двойки: 2^1 = 2 = 2 (mod 5) — неподходящий остаток 2^2 = 4 = 4 (mod 5) 2^3 = 8 = 3 (mod 5) — неподходящий остаток 2^4 = 16 = 1 (mod 5) 2^5 = 32 = 2 (mod 5) — такой же остаток, что и у 2^1, ...
Так как остаток при делении степени на 5 зависит только от остатка при делении на 5 предыдущей степени, то из того, что 2^1 и 2^5 дают одинаковые остатки, следует, что последовательность остатков периодична с периодом 4. Значит, так как при показателях, меньших 5, подходили только степени с чёётным показателем, то можно сделать вывод, что n чётно, n = 2m.
Пример 1. В урне 10 белых и 8 черных шаров. Наудачу отобраны 5 шаров. Найти вероятность того, что среди них окажется ровно 2 белых шара.
Подставляем в формулу (1) значения: K=10K=10, N−K=8N−K=8, итого N=10+8=18N=10+8=18, выбираем n=5n=5 шаров, из них должно быть k=2k=2 белых и соответственно, n−k=5−2=3n−k=5−2=3 черных. Получаем:
P=C210⋅C38C518=45⋅568568=517=0.294.P=C102⋅C83C185=45⋅568568=517=0.294.
Пример 2. В урне 5 белых и 5 красных шаров. Какова вероятность вытащить наудачу оба белых шара?
Здесь шары не черные и белые, а красные и белые. Но это совсем не влияет на ход решения и ответ.
Подставляем в формулу (1) значения: K=5K=5 (белых шаров), N−K=5N−K=5 (красных шаров), итого N=5+5=10N=5+5=10 (всего шаров в урне), выбираем n=2n=2 шара, из них должно быть k=2k=2 белых и соответственно, n−k=2−2=0n−k=2−2=0 красных. Получаем:
P=C25⋅C05C210=10⋅145=29=0.222.P=C52⋅C50C102=10⋅145=29=0.222.
Пример 3. В корзине лежат 4 белых и 2 черных шара. Из корзины достали 2 шара. Какова вероятность, что они одного цвета?
Здесь задача немного усложняется, и решим мы ее по шагам. Введем искомое событие
A=A= (Выбранные шары одного цвета) = (Выбрано или 2 белых, или 2 черных шара).
Представим это событие как сумму двух несовместных событий: A=A1+A2A=A1+A2, где
A1=A1= (Выбраны 2 белых шара),
Вычисляем остатки от деления на 5 степеней двойки:
2^1 = 2 = 2 (mod 5) — неподходящий остаток
2^2 = 4 = 4 (mod 5)
2^3 = 8 = 3 (mod 5) — неподходящий остаток
2^4 = 16 = 1 (mod 5)
2^5 = 32 = 2 (mod 5) — такой же остаток, что и у 2^1,
...
Так как остаток при делении степени на 5 зависит только от остатка при делении на 5 предыдущей степени, то из того, что 2^1 и 2^5 дают одинаковые остатки, следует, что последовательность остатков периодична с периодом 4. Значит, так как при показателях, меньших 5, подходили только степени с чёётным показателем, то можно сделать вывод, что n чётно, n = 2m.
2^(2m) + 65 = k^2
k^2 - (2^m)^2 = 65
(k + 2^m)(k - 2^m) = 65
65 можно разложить на два множителя следующими Получаем два возможных варианта:
1) k + 2^m = 65, k - 2^m = 1
Вычитаем из первого уравнения второе, получаем 2 * 2^m = 64, m = 5, n = 10 (тогда 2^10 + 65 = 1089 = 33^2)
2) k + 2^m = 13, k - 2^m = 5
2 * 2^m = 8
m = 2
n = 4 (в этом случае 2^n + 65 = 81 = 9^2).
ответ. при n = 4 и n = 10.