В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Kiber04ек
Kiber04ек
14.05.2020 05:51 •  Алгебра

При каком значении параметра k уравнение x^4+(2k+8)x^2+k^2+8k+15=0 имеет 4 решения?

Показать ответ
Ответ:
Vika3839
Vika3839
24.05.2020 22:06

x⁴ + (2k+8)x² + k² + 8k + 15 = 0

замена: у = х²

у² + (2k+8)·у + k² + 8k + 15 = 0

Исходное уравнение будет иметь 4 корня, если дискриминант уравнениия относительно у будет положительным и оба корня у₁ и у₂ будут положительными.

Найдём дискриминант  уравнения

D = (2k+8)² - 4(k² + 8k + 15) = 4k² + 32k + 64 - 4k² - 32k - 60 = 4

√D = 2  (два решения!)

у₁ = (-2(k + 4) - 2):2       у₁ = -k - 5        

у₂ = (-2(k + 4) + 2):2       у₁ = -k - 3

Найдём, при каких k оба корня будут положительными

-k - 5  > 0      и   -k - 3 > 0

k < - 5           и      k  < -3

пересечением этих интервалов является k < -5

ответ: при k < -5 исходное уравнение имеет 4 решения

 

 

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота