Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
Собственно, степень роста вложенной суммы от самой суммы никак не зависит - и один рубль и сто рублей удвоятся за одинаковое время N - число лет Z - степень увеличения вложений Z = 1,1^N Прологарифмируем ln(Z) = N*ln(1,1) N = ln(Z)/ln(1,1)
Z = 2 N = ln(2)/ln(1,1) ≈ 7,2725 года (т.е. через 8 лет, если проценты начисляются раз в год)
Z = 3 N = ln(3)/ln(1,1) ≈ 11,5267 года (т.е. через 12 лет, если проценты начисляются раз в год)
Z = 7 N = ln(7)/ln(1,1) ≈ 20,4166 года (т.е. через 21 год, если проценты начисляются раз в год)
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
N - число лет
Z - степень увеличения вложений
Z = 1,1^N
Прологарифмируем
ln(Z) = N*ln(1,1)
N = ln(Z)/ln(1,1)
Z = 2
N = ln(2)/ln(1,1) ≈ 7,2725 года (т.е. через 8 лет, если проценты начисляются раз в год)
Z = 3
N = ln(3)/ln(1,1) ≈ 11,5267 года (т.е. через 12 лет, если проценты начисляются раз в год)
Z = 7
N = ln(7)/ln(1,1) ≈ 20,4166 года (т.е. через 21 год, если проценты начисляются раз в год)