В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
crasheftf
crasheftf
10.12.2020 03:57 •  Алгебра

При каких значениях параметра а область определения функции f(x)=корень из 2*ax - 4x^2-a+ другое выражение под корнем 2x-1 состоит из одной точки?

Показать ответ
Ответ:
Tkaiem
Tkaiem
18.06.2020 00:38
Областью определения является пересечение областей определения функций корень(2x-1) и корень(2*ax - 4x^2-a)
Из первой функции : 2x-1 >= 0,  x >= 1/2
Выражение 2*ax - 4x^2-a - квадратичная функция, ветви параболы вниз. Тогда, необходимые условия : кв. функция 1) имеет один корень и х >=1/2, или 2) имеет два корня и больший из них равен 1/2
D = (2a)^2 - 16a = 4a(a - 4)
1) D = 0;  4a(a - 4) = 0
1.1) a = 0:   - 4x^2 = 0;  x = 0; не подходит
1.2) a = 4:   8x - 4x^2-4 = 0; (х-1)^2 = 0; x = 1; подходит
2) D > 0; 4a(a - 4) > 0  a Є (-00; 0) U (4; +00)
x1,2 = (-2a +- корень(4a(a - 4)) ) / -8 = (a +- корень(a(a - 4)) ) / 4
x1,2 = 1/2
(a +- корень(a(a - 4)) ) / 4 = 1/2
(+- корень(a(a - 4)) ) ^ 2 = (2 - a) ^ 2
a ^ 2 - 4a = 4 + a ^ 2 - 4a
0 = 4
нет решений

ответ : при а = 4
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота