Пусть момент прихода юноши - это x, момент прихода девушки - y. При этом 0 соответствует 12 часам дня, а 1 - 12:05 и так далее до 12, соответствуещего 13:00. На координатной плоскости множество всех возможных событий - это квадрат, заданный условиями . Теперь найдем, каким точкам соответствует событие "встреча состоялась". Дополнительно ко всему нижеследующему налагается условие, что точки вне квадрата не рассматриваются. 1) Условие того, что девушка не уйдет раньше прихода юноши: . Заметим, что условие также выполняется, если юноша приходит первым, т.к. тогда правая часть отрицательна. 2) Аналогично рассматриваем условие, что юноша не уйдет раньше: .
Оба условия должны выполняться одновременно, поэтому фигура, составленная из точек, для которых встреча происходит - это промежуток между прямыми y=x-1; y=x+6, на рисунке отмечена синим. Искомая вероятность равна отношению площади этой фигуры к площади квадрата. Это отношение можно искать по-разному, ответ получается .
(х² - 1)² + (х - 1) = 0
((x - 1)(x + 1))² + (x - 1) = 0
(x - 1)*((x - 1) * (x + 1)² + 1) = 0
x - 1 = 0 (x - 1) * (x + 1)² + 1 = 0
x = 1 (x - 1) * (x² + 2x + 1) + 1 = 0
x³ + 2x² + x - x² - 2x - 1 + 1 = 0
x³ + x² - x = 0
x(x² + x - 1) = 0
x = 0 x² + x - 1 = 0
D = 1² + 4 * 1 * 1 = 5
x = (-1 - √5)/2
x = (-1 + √5)/2
ответ:
---------------------------------------------------------------------------------
1) Условие того, что девушка не уйдет раньше прихода юноши: . Заметим, что условие также выполняется, если юноша приходит первым, т.к. тогда правая часть отрицательна.
2) Аналогично рассматриваем условие, что юноша не уйдет раньше: .
Оба условия должны выполняться одновременно, поэтому фигура, составленная из точек, для которых встреча происходит - это промежуток между прямыми y=x-1; y=x+6, на рисунке отмечена синим. Искомая вероятность равна отношению площади этой фигуры к площади квадрата. Это отношение можно искать по-разному, ответ получается .