В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
dashab1212200
dashab1212200
05.09.2020 03:50 •  Алгебра

При каких a существует решение неравенства 2 > |x-a|+x^

Показать ответ
Ответ:
Егорка156
Егорка156
03.10.2020 18:50
Перепишем неравенство в виде /x-a/<2-x². Это неравенство равносильно двойному неравенству x²-2<x-a<2-x², которое сводится к системе двух неравенств:

x²-2<x-a
x-a<2-x²

Перепишем первое неравенство в виде x²-x+(a-2)<0. Для его решения решим квадратное уравнение x²-x+(a-2)=0. Дискриминант D=1-4*(a-2)=
9-4*a. Если D<0, то x²-x+(a-2)>0 при любых x, если D=0, то x²-x+(a-2)≥0, если D>0, то возможно выполнение неравенства x²-x+(a-2)<0. Значит, должно выполняться требование 9-4*a>0, откуда a<9/4.

Перепишем второе неравенство в виде x²+x-(a+2)<0. Составляем квадратное уравнение x²+x-(a+2)=0. Дискриминант D=1+4*(a+2)=
9+4*a. Если D<0, то x²+x-(a+2)>0, если D=0, то x²+x-(a+2)≥0, если D>0, то возможно выполнение неравенства x²+x-(a+2)²<0. Значит, должно 
выполняться требование 9+4*a>0, откуда a>-9/4. Отсюда -9/4<a<9/4.

ответ: a∈ (-9/4;9/4).
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота