Покажем на рисунке необходимые величины. Ось X направим по направлению движения. Так как скорость спринтера растёт, то ускорение направлено также по движению (по скорости). Это можно понять, если проанализировать формулу (6) – вектор v будет увеличиваться, если он направлен по вектору a ! Впрочем, если ты не знаешь, куда направить ускорение – ничего страшного – направляй куда-нибудь (в этой задаче, естественно, либо по движению, либо против). Знак ответа даст тебе правильное направление: если получится (+), то ускорение было направлено правильно, ну а если (–), то в другую сторону.
Запишем формулы (6) и (7) в проекции на ось X для данной задачи:
v A=at ; S= at 2
По условию начальная скорость v0=0 , а так как все вектора 2 направлены по оси X, то везде знаки (+). Из первой формулы можно найти ускорение a=vtA =5 м/с2 , подставляя которое во вторую формулу получим перемещение (и путь, так как движение происходит вдоль прямой в одну сторону): S=10м .
Сначала вырази синусы данных углов через синус углов из первой четверти: sin (–55°) = –sin 55°, потом sin 600° = sin (240° + 360°) = sin 240° = sin (180° + 60°) = =–sin 60°, sin 1295° = sin (215° + 3*360°) = sin 215° = sin (180° + 35°) = –sin 35°. И так как углы 55°, 60° и 35° принадлежат первой четверти, в которой большему углу соответствует больший синус, то sin 35° < sin 55° < sin 60°. Но тогда –sin 35° > –sin 55° > –sin 60°, а поэтому sin 1295° > sin (–55°) > sin 600°. ответ:sin 600°, sin (–55°), 1295°
Путь (S) = 10 м
Ускорение (а) = 5м/с2
Объяснение:
Покажем на рисунке необходимые величины. Ось X направим по направлению движения. Так как скорость спринтера растёт, то ускорение направлено также по движению (по скорости). Это можно понять, если проанализировать формулу (6) – вектор v будет увеличиваться, если он направлен по вектору a ! Впрочем, если ты не знаешь, куда направить ускорение – ничего страшного – направляй куда-нибудь (в этой задаче, естественно, либо по движению, либо против). Знак ответа даст тебе правильное направление: если получится (+), то ускорение было направлено правильно, ну а если (–), то в другую сторону.
Запишем формулы (6) и (7) в проекции на ось X для данной задачи:
v A=at ; S= at 2
По условию начальная скорость v0=0 , а так как все вектора 2 направлены по оси X, то везде знаки (+). Из первой формулы можно найти ускорение a=vtA =5 м/с2 , подставляя которое во вторую формулу получим перемещение (и путь, так как движение происходит вдоль прямой в одну сторону): S=10м .
sin (–55°) = –sin 55°,
потом sin 600° = sin (240° + 360°) = sin 240° = sin (180° + 60°) =
=–sin 60°,
sin 1295° = sin (215° + 3*360°) = sin 215° = sin (180° + 35°) = –sin 35°.
И так как углы 55°, 60° и 35° принадлежат первой четверти, в которой большему углу соответствует больший синус,
то sin 35° < sin 55° < sin 60°.
Но тогда –sin 35° > –sin 55° > –sin 60°,
а поэтому sin 1295° > sin (–55°) > sin 600°.
ответ:sin 600°, sin (–55°), 1295°