Преобразуйте в многочлен выражение слагаемые в ответе запиши в порядке убывания степеней слева направо. в номере 4 ответ запиши в порядке убывания степеней х
1) - 3a^2(a-3)(a+2)
2) 4m(m^2-6)(m^2+8)
3) (a+1)(a-2)(a+9)
4) (2x-5y)(x+6y)(3x-y)
5) (x^2+x-1)(x^2-3x+7)
Два фермера, работая вместе, могут вспахать поле за 25 часов.
Производительность труда у первого и второго относятся как 2:5.
Фермеры планируют работать поочередно.
Сколько времени должен проработать второй фермер, чтобы поле было вспахано за 45,5 часов?
Пусть Х-производительность 1-го, У-производительность 2-го.
Система:
х+у=125
2х=5у
Последовательно:
2х+2у=2/25
2х-5у=0
7у=2/25 и у=2175
Тогда х=135
Итак, производительности мы нашли.
Поочередно фермеры работали 45,5 часа = 91/2 часа.
Пусть из этого времени 2-ой работал Т часов, тогда 1-ый работал 912-Т часов.
Уравнение:
(91/2-Т)⋅(1/35)+Т⋅(2/175)=1
имеет корень Т=17,5
Проверка.
1. проверим , что х+у=125
1/35+2/175=(70+175)/(175⋅35)=7/175=1/25
2. проверим, что 2х=3у:
2/35=5⋅2/175
3. Проверим уравнение при поочередной работе:
Если 2-ой работал 17,5 часов, то 1-ый работал 45,5-17,5=28 часов
28⋅135+(352)⋅(2175)=28/35+1/5=1
ОТВЕТ: 17,5
Детский билет стоит 60 рублей,
Взрослый билет стоит 195 рублей.
Объяснение:
Обозначим один детский билет как "x", а один взрослый билет - "y".
В условии сказано, что первая семья купила 2 детских билета и один взрослый, заплатив 315 рублей. Следовательно:
2x + y = 315.
Вторая же семья купила 3 детских и 2 взрослых, заплатив 570 рублей. Следовательно:
3x + 2y = 570.
Составим систему уравнений:
{2x + y = 315
{3x + 2y = 570
Решим систему уравнений подстановки:
{y = 315 - 2x
{3x + 2y = 570
Подставим значение Y во второе уравнение:
3x + 2 * (315 - 2x) = 570
Раскроем скобки:
3x + 630 - 4x = 570
с "x" в левой части, без "x" - переносим в правую с противоположным знаком.
3x - 4x = 570 - 630
-x = -60 / : (-1)
x = 60 - стоимость одного детского билета.
y = 315 - 2x = 315 - 2 * 60 = 315 - 120 = 195 - стоимость одного взрослого билета.