допустим что стороны прямоугольника A и B, и площадь S. Тогда S=A*B (площадь равно произведению сторон). Далее сказано, что одна сторона больше другой на 11 см. доопустим A=B+11. следовательно можно составить уравнение: S=(B+11)*B. Далее у нас сказано, что площадь равна 60 см(в квадрате). Следовательно составляем квадратное уравнение:
Далее решаем как обычное квадратное уравнение. В итоге получим что . Меньше нуля быть не может, поэтому B=4. А т.к. А=B+11, то А=4+11=15.
допустим что стороны прямоугольника A и B, и площадь S. Тогда S=A*B (площадь равно произведению сторон). Далее сказано, что одна сторона больше другой на 11 см. доопустим A=B+11. следовательно можно составить уравнение: S=(B+11)*B. Далее у нас сказано, что площадь равна 60 см(в квадрате). Следовательно составляем квадратное уравнение:
Далее решаем как обычное квадратное уравнение. В итоге получим что . Меньше нуля быть не может, поэтому B=4. А т.к. А=B+11, то А=4+11=15.
А=15
и B=4.
Периметр будет равен (A+B)*2=(15+4)*2=19*2=38см.
f(x) = x³ - 3x [0 , 2]
Найдём производную :
f'(x) = (x³)' - 3(x)' = 3x² - 3
Найдём нули производной :
3x² - 3 = 0
3(x² - 1) = 0
x² - 1 = 0
x₁ = - 1 x₂ = 1
Только x = 1 ∈ [0 ; 2]
Определим знаки производной на отрезке [0 , 2] :
- +
[0][1][2]
min
В точке x = 1 функция имеет минимум, который является наименьшим значением на заданном отрезке. Найдём это наименьшее значение :
f(1) = 1³ - 3 * 1 = 1 - 3 = - 2
Найдём значения функции на концах отрезка :
f(0) = 0³ - 3 * 0 = 0
f(2) = 2³ - 3 * 2 = 8 - 6 = 2
ответ : наименьшее значение равно - 2 , а наибольшее равно 2 .