Представьте в виде произведения: 25 - 36p^2c^2; (3+y)^2 - 4; (3x+1)^2 - (4x-3)^2; 100 - 49x^2y^2; (5+x)^2 - 9; (2a + 7)^2 - (3a - 5)^2 разложите на множители x^2n - 9; b^2 - a^4n; x^2n - y^2n; 81a^8n - 16; a^2n - 1; x^2- y^4n; a^4n - b^4n; 49x^6m - 25
(3+y)² - 4 = (3+у)²-2² = (3+у-2)(3+у+2) = (у+1)(у+5)
(3x+1)² - (4x-3)² = (3х+1-4х+3)(3х+1+4х-3) = (-х+4)(7х-2)
100 - 49x²y² = 10²-(7ху)² = (10-7ху)(10+7ху)
(5+x)² - 9 = (5+х)²-3² = (5+х-3)(5+х+3) = (х+2)(х+8)
(2a + 7)² - (3a - 5)² = (2а+7-3а+5)(2а+7+3а-5) = (-а+12)(5а+2)
2. x²ⁿ - 9 = (хⁿ)²-3² = (хⁿ-3)(хⁿ+3)
b² - a⁴ⁿ = b² - (a²ⁿ)² = (b-a²ⁿ)(b+a²ⁿ)
x²ⁿ - y²ⁿ = (хⁿ)²-(уⁿ)² = (хⁿ-уⁿ)(хⁿ+уⁿ)
81a⁸ⁿ - 16 = (9а⁴ⁿ)²-4² = (9а⁴ⁿ-4)(9а⁴ⁿ+4) = (3а²ⁿ-2)(3а²ⁿ+2)(9а⁴ⁿ+4)
a²ⁿ - 1 = (аⁿ)²-1² = (аⁿ-1)(аⁿ+1)
x²- y⁴ⁿ = х²-(у²ⁿ)² = (х-у²ⁿ)(х+у²ⁿ)
a⁴ⁿ - b⁴ⁿ = (а²ⁿ)²-(b²ⁿ)² = (a²ⁿ-b²ⁿ)(a²ⁿ+b²ⁿ) = (aⁿ-bⁿ)(aⁿ-bⁿ)(a²ⁿ+b²ⁿ)
49x^6m - 25 = (7x^3m)² - 5² = (7x^3m - 5)(7x^3m + 5)