Представьте в виде многочлена выражение: 1) (x+9)2степень 2) (3a-8b)2степень 3) (m-7)(m+7) 4) (6a+10b)(10b-6a). Разложите на множители : 1) c2 степень-1 2)x2 степень-4x+4 3) 25y2степень-4 4)36a2степень-60ab+25b2степень. У выражение: (x+3)(x-3)-(x-4)2степень
выражение под корнем не должно принимать отрицательных значений...
2. произведение (скобки на корень) должно получиться отрицательным (по условию), а корень четной степени не может быть отрицательным числом, потому выражение в скобке должно быть отрицательным: (-)*(+) < 0
получим систему неравенств:
{x² - 1 ≤ 0
{x² - 4 ≥ 0
оба неравенства решаются методом интервалов...
{(x - 1)(х + 1) ≤ 0 ---> x ∈ [-1; 1]
{(x - 2)(х + 2) ≥ 0 ---> x ∈ (-∞; -2] U [2; +∞)
решение системы --пересечение промежутков...
ответ: {-2; 2}
2) При возведении числа 111 в любую натуральную степень последняя цифра будет всегда 1. Если из такого числа вычесть 6, то на конце будет цифра 5. А число, которое заканчивается нулём или пятёркой, делится на 5. Что у нас и наблюдается.