1) первый можно решить следующим образом: [(x-2)(x+3)][(x-1)(x+2)]=60 <=> (x²+x-6)(x²+x-2)=60 теперь можно ввести замену, скажем t=x²+x-4, тогда относительно t уравнение перепишется в ввиде (t-2)(t+2)=60 <=> t²=64 и t=8 и t=-8 возвращаемся и исходной переменной x²+x-4=8 и x²+x-4=-8 x²+x-12=0 и x²+x+4=0 второе уравнение не имеет решения в действительных числах, первое же <=> (x+4)(x-3)=0, откуда x=3 и x=-4.
2) вынесем за скобку в правой части общий член, тогда 1/(2x+1)*[4/(2x-1)-(x-1)/x]=2/(2x-1); приведем к общему знаменателю [4x-(x-1)(2x-1)]/[x(2x-1)(2x+1)]=2/(2x-1); сократим на 2х-1: -2x²+7x-1=2x(2x+1); -2x²+7x-1=4x²+2x; 6x²-5x+1=0; решаем полученное квадратное уравнение x=(5+1)/12=1/2- не удовлетворяет области определения исходного уравнения; x=(5-1)/12=1/3. Т. о. единственное решение х=1/3.
Даны выражения √(x-1), √(6-х), √(10+3х). По свойству геометрической прогрессии:
квадрат любого члена геометрической прогрессии, начиная со второго, равен произведению двух соседних членов, стоящих перед ним и после него:(bn)² = b(n-1) * b(n+1).
(√(6-х))² = (√(x-1))*√((10+3х)).
6-х = √(10х-10+3х²-3х) возведём в квадрат обе части уравнения:
первый можно решить следующим образом:
[(x-2)(x+3)][(x-1)(x+2)]=60 <=> (x²+x-6)(x²+x-2)=60
теперь можно ввести замену, скажем t=x²+x-4, тогда относительно t уравнение перепишется в ввиде
(t-2)(t+2)=60 <=> t²=64 и t=8 и t=-8
возвращаемся и исходной переменной
x²+x-4=8 и x²+x-4=-8
x²+x-12=0 и x²+x+4=0
второе уравнение не имеет решения в действительных числах, первое же <=> (x+4)(x-3)=0, откуда x=3 и x=-4.
2)
вынесем за скобку в правой части общий член, тогда
1/(2x+1)*[4/(2x-1)-(x-1)/x]=2/(2x-1);
приведем к общему знаменателю
[4x-(x-1)(2x-1)]/[x(2x-1)(2x+1)]=2/(2x-1);
сократим на 2х-1:
-2x²+7x-1=2x(2x+1);
-2x²+7x-1=4x²+2x;
6x²-5x+1=0;
решаем полученное квадратное уравнение
x=(5+1)/12=1/2- не удовлетворяет области определения исходного уравнения;
x=(5-1)/12=1/3.
Т. о. единственное решение х=1/3.
По свойству геометрической прогрессии:
квадрат любого члена геометрической прогрессии, начиная со второго, равен произведению двух соседних членов, стоящих перед ним и после него:(bn)² = b(n-1) * b(n+1).
(√(6-х))² = (√(x-1))*√((10+3х)).
6-х = √(10х-10+3х²-3х) возведём в квадрат обе части уравнения:
36-12х+х² = 3х²+7х-10
2х²-19х-46 = 0. Получили квадратное уравнение.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-19)^2-4*2*(-46)=361-4*2*(-46)=361-8*(-46)=361-(-8*46)=361-(-368)=361+368=729;
Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√729-(-19))/(2*2)=(27-(-19))/(2*2)=(27+19)/(2*2)=46/(2*2)=46/4=11.5;
x₂=(-√729-(-19))/(2*2)=(-27-(-19))/(2*2)=(-27+19)/(2*2)=-8/(2*2)=-8/4=-2.
ответ: при х = 11,5 и х = -2 выражения √(x-1), √(6-х) и √(10+3х) являются последовательными членами геометрической прогрессии.