Сначала вырази синусы данных углов через синус углов из первой четверти: sin (–55°) = –sin 55°, потом sin 600° = sin (240° + 360°) = sin 240° = sin (180° + 60°) = =–sin 60°, sin 1295° = sin (215° + 3*360°) = sin 215° = sin (180° + 35°) = –sin 35°. И так как углы 55°, 60° и 35° принадлежат первой четверти, в которой большему углу соответствует больший синус, то sin 35° < sin 55° < sin 60°. Но тогда –sin 35° > –sin 55° > –sin 60°, а поэтому sin 1295° > sin (–55°) > sin 600°. ответ:sin 600°, sin (–55°), 1295°
Приделении на 3 может получиться только три разных остатка: 0, 1 и 2.
Очевидно, что если поставить подряд два числа, у которых при делении на 3 получаются остатки 1 и 2, то их сумма разделится нацело на 3.
Три одинаковых остатка также подряд стоять не могут, потому что тогда их сумма кратна 3.
Значит в любой тройке идущих подряд чисел должно быть:
1) два числа с одинаковыми остатками и число с остатком 0
либо
2) два числа с остатком 0 и одно с ненулевым остатком.
Так как вопрос стоял о минимуме, то наш случай - под номером 1. То есть кратно трём каждое третье число.
ответ: 15.
Объяснение:
sin (–55°) = –sin 55°,
потом sin 600° = sin (240° + 360°) = sin 240° = sin (180° + 60°) =
=–sin 60°,
sin 1295° = sin (215° + 3*360°) = sin 215° = sin (180° + 35°) = –sin 35°.
И так как углы 55°, 60° и 35° принадлежат первой четверти, в которой большему углу соответствует больший синус,
то sin 35° < sin 55° < sin 60°.
Но тогда –sin 35° > –sin 55° > –sin 60°,
а поэтому sin 1295° > sin (–55°) > sin 600°.
ответ:sin 600°, sin (–55°), 1295°