Предикаты P(x) =(3 полосы) {|x| = -1}, S(x) =(3 полосы) {x+3=0} заданы на множестве R. Укажите область истинности предиката: 1) P (x) →(импликация) S (x)
Обозначаем прямую х= -2 +t ; y= 4+3t ; z= -3+2t через a . Если берем произвольную точку Т ∉ a ( не на прямой ) и через эту точку проведем прямую k || a , то очевидно любая плоскость α (кроме единственной , которая проходит и через a) будет параллельно a : α || a . [ прямая k _"ось вращения " ] . * * * t =(x+2)/1=(y-4)/3=(z+3)/2 ; L ={1;3;2} направляющий вектор * * * Вектор n{ A ;2 ; B} нормальный вектор плоскости β: Ax+2y +Bz -10 =0. β || a ⇒ n ⊥ L ⇔ n*L =0 (скалярное произведение). A*1+2*3+ B*3 =0 ⇒A +2B = - 6 (соотношение между A и B). любая пара чисел ( -6-2B ; B ) , B ≠ -10. * * * Если B = -10 ⇒a ∈ β.* * *
ответ : пара чисел (- 6 - 2B ; B) , B ≠ -10 или по другому (A ;- (6+A)/2) , A ≠ 14.
Разложим трёхзначное число 4ab по разрядам, получим 400+10a+b Переставим в трёхзначном числе цифру 4 на место единиц и разложим получившееся число по разрядам, получим 100a+10b+4 Вычтем из числа 4ab число ab4, получим: (400+10a+b)-(100a+10b+4)=400+10a+b-100a-10b-4=396-90a-9b По условию, данная разность равна 279. Составим уравнение: 396-90a-9b=279 -90a-9b=-117 |:(-9) 10a+b=13 Заметим, что 10a+b - поразрядная запись числа 13, т.е. a=1 и b=3 Следовательно, 4ab - это число 413 ab4 - это число 134 Находим сумму полученных трёхзначных чисел: 413+134=547 ответ: А) 547
Если берем произвольную точку Т ∉ a ( не на прямой ) и через эту точку проведем прямую k || a , то очевидно любая плоскость α (кроме единственной , которая проходит и через a) будет параллельно a : α || a . [ прямая k _"ось вращения " ] .
* * * t =(x+2)/1=(y-4)/3=(z+3)/2 ; L ={1;3;2} направляющий вектор * * *
Вектор n{ A ;2 ; B} нормальный вектор плоскости β: Ax+2y +Bz -10 =0.
β || a ⇒ n ⊥ L ⇔ n*L =0 (скалярное произведение).
A*1+2*3+ B*3 =0 ⇒A +2B = - 6 (соотношение между A и B).
любая пара чисел ( -6-2B ; B ) , B ≠ -10. * * * Если B = -10 ⇒a ∈ β.* * *
ответ : пара чисел (- 6 - 2B ; B) , B ≠ -10 или по другому (A ;- (6+A)/2) , A ≠ 14.
Переставим в трёхзначном числе цифру 4 на место единиц и разложим получившееся число по разрядам, получим 100a+10b+4
Вычтем из числа 4ab число ab4, получим:
(400+10a+b)-(100a+10b+4)=400+10a+b-100a-10b-4=396-90a-9b
По условию, данная разность равна 279.
Составим уравнение:
396-90a-9b=279
-90a-9b=-117 |:(-9)
10a+b=13
Заметим, что 10a+b - поразрядная запись числа 13, т.е. a=1 и b=3
Следовательно, 4ab - это число 413
ab4 - это число 134
Находим сумму полученных трёхзначных чисел:
413+134=547
ответ: А) 547