В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
sasgat
sasgat
27.12.2022 07:20 •  Алгебра

пожвлусто мне У таблиці подано відсотки що характеризують кількість учнів 10х класів у США, які що дня курять. За до компютера


пожвлусто мне У таблиці подано відсотки що характеризують кількість учнів 10х класів у США, які що д

Показать ответ
Ответ:
кошИчкаНЕКО
кошИчкаНЕКО
17.03.2020 00:03

ответ:

y = x^4 – 2x^2 – 8.

найдем координаты точек пересечения графика функции с осью абсцисс (х).

x^4 – 2x^2 – 8 = 0.

произведем замену: а = x^2, a^2 = x^4.

a^2 – 2а – 8 = 0.

дискриминант:

d = 2^2 – 4*(-8) = 4 + 32 = 36.

a1 = (2 + √36)/2 = (2 + 6)/2 = 8/2 = 4.

a2 = (2 - √36)/2 = (2 – 6)/2 = -4/2 = -2 – данное значения не подходит, потому что x^2 не может быть ниже нуля.

x^2 = 4 ⇒ х1 = 2, х2 = -2.

уравнение касательной:

у = f(x0) + f ‘(x0)(x – x0).

1. x0 = x1 = 2.

f(x0) = 2^4 – 2*(2^2) – 8 = 16 – 8 – 8 = 0.

f ‘(x) = 4x^3 – 4x.

f ‘(x0) = 4*8 – 4*2 = 32 – 8 = 24.

уравнение касательной:

у1 = 24(x – 2) = 24х – 48.

2. x0 = x1 = - 2.

f(x0) = (-2)^4 – 2*((-2)^2) – 8 = 16 – 8 – 8 = 0.

f ‘(x) = 4x^3 – 4x.

f ‘(x0) = 4*(-8) – 4*(-2) = -32 + 8 = -24.

уравнение касательной:

у2 = -24(x + 2) = -24х - 48.

3. чтобы найти точку пересечения касательных у1 = 24х – 48 и у2 = -24х - 48, приравняем их правые части и найдем координату х:

24х – 48 = -24х - 48;

24х + 24х = - 48 + 48;

48х = 0;

х = 0/48;

х = 0.

у1 = 24*0 – 48 = 0 – 48 = -48.

ответ: (0; -48).

0,0(0 оценок)
Ответ:
dianafaizullin1
dianafaizullin1
20.11.2022 15:27
Решение
1)  2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2)  sin2x - √2/2 < 0
 sin2x < √2/2 
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
 - 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
 - 5π/8 + πk < x < π/8 + πk, k ∈ Z
3)  tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота