Потяг у дорозі було затримано на 30 хвилин. щоб компенсувати затримку, машиніст потяга на перегоні завдовжки 225 км збільшив швидкість на 5 км/год порівняно із запланованою. з якою запланованою швидкістю мав рухатися потяг?
6g66yggyy6y6yygyygg6ygggfy6yyy6gyyĝg6gyyyĝyyĝyyyg6yyĝggĝ GG ĝĝĝfĝggĝxĝgff GG GG your g GG GG of fg fg f GG GG GG good ft Lauderdale GG ggg GG g GG ĝfg GG g ft g GG g GG fggf ĝĝĝfĝggĝxĝgff ggyfgg ft fggf ĝĝĝfĝggĝxĝgff xgg GG gg GG g GG fggf GG ffg GG GG g GG f, TX for ZDPCWQ yyygyyggg ggyfgg y GG you get ygg yyygyyggg to ggyfgg g GG yy GG gyygy yyygyyggg GG yyy gy yggygyygygggy GG GG GG gyg GG fyyy GG GG GG y g GG f ft yyf yyg GG GG GG gg GG GG GG GG gg GG gy gyg ygg yyygyyggg gy GG GG GG g GG gygggy GG gy fggf g yyygyyggg ggy gy gg ĝ yyygyyggg ggyfgg ggyfgg g ft fggf gg GG y xxyxyzyd
Если одночлены состоят из одинаковых переменных в одинаковых степенях, то они являютсяподобными. Коэффициенты одночленов при этом могут различаться. Примеры подобных одночленов: 3a2 и –4a2; 31 и 45; a2bx4 и 1,4a2bx4; 100y3и 100y3
Но одночлены –6ab2 и 6ab не являются подобными, так как у них переменная b находится в разных степенях.
Подобные одночлены обладают удивительным свойством — их можно легко складывать и вычитать. Если нужно найти сумму двух или более подобных одночленов, то их коэффициенты надо сложить, а переменные в сумме оставить без изменений. Если же требуется найти разность двух подобных одночленов, то коэффициент одного одночлена надо вычесть из второго, а переменные оставить без изменений. Примеры: 4x2 + 15x2 = 19x2 5ab – 1,7ab = 3,3ab 13a10b5c3 – 13a10b5c3 = 0a10b5c3 = 0
Эти действия называются приведением подобных одночленов.
Почему же подобные одночлены можно так складывать и вычитать? Попробуем упростить выражения, не используя правила приведения подобных одночленов: 2x + 4x = (x + x) + (x + x + x + x) = x + x + x + x + x + x = 6 * x = 6x 2x – 4x = (x + x) – (x + x + x + x) = x + x – x – x – x – x = – x – x = – (x + x) = –(2x) = –2x
То есть свойство подобных членов вытекает из правила арифметики о том, что произведение двух чисел является ничем иным как суммой из слагаемых одного числа, где количество слагаемых равно другому числу: 2 * 3 = 3 + 3 = 2 + 2 + 2
Объяснение:
6g66yggyy6y6yygyygg6ygggfy6yyy6gyyĝg6gyyyĝyyĝyyyg6yyĝggĝ GG ĝĝĝfĝggĝxĝgff GG GG your g GG GG of fg fg f GG GG GG good ft Lauderdale GG ggg GG g GG ĝfg GG g ft g GG g GG fggf ĝĝĝfĝggĝxĝgff ggyfgg ft fggf ĝĝĝfĝggĝxĝgff xgg GG gg GG g GG fggf GG ffg GG GG g GG f, TX for ZDPCWQ yyygyyggg ggyfgg y GG you get ygg yyygyyggg to ggyfgg g GG yy GG gyygy yyygyyggg GG yyy gy yggygyygygggy GG GG GG gyg GG fyyy GG GG GG y g GG f ft yyf yyg GG GG GG gg GG GG GG GG gg GG gy gyg ygg yyygyyggg gy GG GG GG g GG gygggy GG gy fggf g yyygyyggg ggy gy gg ĝ yyygyyggg ggyfgg ggyfgg g ft fggf gg GG y xxyxyzyd
Если одночлены состоят из одинаковых переменных в одинаковых степенях, то они являютсяподобными. Коэффициенты одночленов при этом могут различаться. Примеры подобных одночленов:
3a2 и –4a2; 31 и 45; a2bx4 и 1,4a2bx4; 100y3и 100y3
Но одночлены –6ab2 и 6ab не являются подобными, так как у них переменная b находится в разных степенях.
Подобные одночлены обладают удивительным свойством — их можно легко складывать и вычитать. Если нужно найти сумму двух или более подобных одночленов, то их коэффициенты надо сложить, а переменные в сумме оставить без изменений. Если же требуется найти разность двух подобных одночленов, то коэффициент одного одночлена надо вычесть из второго, а переменные оставить без изменений. Примеры:
4x2 + 15x2 = 19x2
5ab – 1,7ab = 3,3ab
13a10b5c3 – 13a10b5c3 = 0a10b5c3 = 0
Эти действия называются приведением подобных одночленов.
Почему же подобные одночлены можно так складывать и вычитать? Попробуем упростить выражения, не используя правила приведения подобных одночленов:
2x + 4x = (x + x) + (x + x + x + x) = x + x + x + x + x + x = 6 * x = 6x
2x – 4x = (x + x) – (x + x + x + x) = x + x – x – x – x – x = – x – x = – (x + x) = –(2x) = –2x
То есть свойство подобных членов вытекает из правила арифметики о том, что произведение двух чисел является ничем иным как суммой из слагаемых одного числа, где количество слагаемых равно другому числу:
2 * 3 = 3 + 3 = 2 + 2 + 2