Объяснение:
1) В коробке 2 красных шарика и 3 белых.
Если вынуть 1 красный, то останется 1 красный и 3 белых.
Красных 1/4.
Если вынуть 2 белых, то останется 2 красных и 1 белый.
Белых 1/3.
Всего 2 + 3 = 5 шариков.
ответ Б. 5.
2) У любого куба 8 угловых кубиков с 3 покрашенными гранями,
12*(p-2) кубиков на ребрах с 2 покрашенными гранями,
6(p-2)^2 кубиков на гранях с 1 покрашенной гранью и
(p-2)^3 внутренних граней, которые вообще не покрашены.
Например, у куба 3*3*3 будет 8 кубиков с 3 гранями,
12*1=12 кубиков с 2 гранями, 6*1^2 = 6 кубиков с 1 гранью и 1^3 = 1 кубик внутри.
Всего 8 + 6 = 14 нечетных кубиков и 12 + 1 = 13 четных кубиков.
А должно быть количество четных и нечетных кубиков одинаково.
8 + 6(p-2)^2 = 12(p-2) + (p-2)^3
Делаем замену p-2 = t и получаем кубическое уравнение:
t^3 - 6t^2 + 12t - 8 = 0
Так как t - число натуральное, то оно должно быть делителем 8.
t = 1 не подходит. Попробуем t = 2.
t^3 - 2t^2 - 4t^2 + 8t + 4t - 8 = 0
t^2*(t - 2) - 4t*(t - 2) + 4(t - 2) = 0
(t - 2)(t^2 - 4t + 4) = 0
(t - 2)^3 = 0
t = p - 2 = 2 - подошло.
p = 4
Только у куба 4*4*4 количество кубиков с нечетным числом окрашенных граней равно количеству кубиков с четным числом.
ответ: А. 4.
3. Периметр клумбы P1 = 2(a + b) = 14 м, значит, a + b = 7, b = 7 - a.
Площадь клумбы S1 = ab = a(7 - a) = 7a - a^2 кв.м.
Если длину каждой стороны увеличить на 1 м, то получится:
S2 = (a+1)(8-a) = 8a + 8 - a^2 - a = 7a - a^2 + 8 = S1 + 8 кв.м.
ответ: Площадь увеличится на 8 кв.м.
1) При x ≥ 9 значения функции y = -5x - 3 не больше -48.
2) При x > -4 значения функции y = -3/4 *x - 1 меньше 2.
Рисунки прилагаются.
1) y = -5x - 3 линейная функция, график прямая линия, пересекает ось OY в точке (0; --3).
Выберем еще одну точку и построим график функции: x = 10; y = -50-3 = -53.
При каких значениях x значения функции не больше (значит меньше или равно) -48?
Построим в этой же системе координат прямую y = -48.
По графикам видно, что что -5x - 3 ≤ -48 при x ≥ 9
Проверим аналитически:
-5x -3 ≤ -48; -5x ≤ -48 +3; -5x ≤ -45; x ≥ 9.
2) y = -3/4*x - 3 = -0,75x - 1 линейная функция, график прямая линия, пересекает ось OY в точке (0; -1).
Выберем еще одну точку и построим график функции: x = 4;
y = -0,75*4 -1 = -3 - 1 = -4.
При каких значениях x значения функции меньше 2?
Построим в этой же системе координат прямую y = 2.
По графикам видно, что -0,75x - 1 ≤ -2 при x > -4
-0,75x -1 < 2; -0,75x < 3; x > -4.
Объяснение:
1) В коробке 2 красных шарика и 3 белых.
Если вынуть 1 красный, то останется 1 красный и 3 белых.
Красных 1/4.
Если вынуть 2 белых, то останется 2 красных и 1 белый.
Белых 1/3.
Всего 2 + 3 = 5 шариков.
ответ Б. 5.
2) У любого куба 8 угловых кубиков с 3 покрашенными гранями,
12*(p-2) кубиков на ребрах с 2 покрашенными гранями,
6(p-2)^2 кубиков на гранях с 1 покрашенной гранью и
(p-2)^3 внутренних граней, которые вообще не покрашены.
Например, у куба 3*3*3 будет 8 кубиков с 3 гранями,
12*1=12 кубиков с 2 гранями, 6*1^2 = 6 кубиков с 1 гранью и 1^3 = 1 кубик внутри.
Всего 8 + 6 = 14 нечетных кубиков и 12 + 1 = 13 четных кубиков.
А должно быть количество четных и нечетных кубиков одинаково.
8 + 6(p-2)^2 = 12(p-2) + (p-2)^3
Делаем замену p-2 = t и получаем кубическое уравнение:
t^3 - 6t^2 + 12t - 8 = 0
Так как t - число натуральное, то оно должно быть делителем 8.
t = 1 не подходит. Попробуем t = 2.
t^3 - 2t^2 - 4t^2 + 8t + 4t - 8 = 0
t^2*(t - 2) - 4t*(t - 2) + 4(t - 2) = 0
(t - 2)(t^2 - 4t + 4) = 0
(t - 2)^3 = 0
t = p - 2 = 2 - подошло.
p = 4
Только у куба 4*4*4 количество кубиков с нечетным числом окрашенных граней равно количеству кубиков с четным числом.
ответ: А. 4.
3. Периметр клумбы P1 = 2(a + b) = 14 м, значит, a + b = 7, b = 7 - a.
Площадь клумбы S1 = ab = a(7 - a) = 7a - a^2 кв.м.
Если длину каждой стороны увеличить на 1 м, то получится:
S2 = (a+1)(8-a) = 8a + 8 - a^2 - a = 7a - a^2 + 8 = S1 + 8 кв.м.
ответ: Площадь увеличится на 8 кв.м.
1) При x ≥ 9 значения функции y = -5x - 3 не больше -48.
2) При x > -4 значения функции y = -3/4 *x - 1 меньше 2.
Объяснение:
Рисунки прилагаются.
1) y = -5x - 3 линейная функция, график прямая линия, пересекает ось OY в точке (0; --3).
Выберем еще одну точку и построим график функции: x = 10; y = -50-3 = -53.
При каких значениях x значения функции не больше (значит меньше или равно) -48?
Построим в этой же системе координат прямую y = -48.
По графикам видно, что что -5x - 3 ≤ -48 при x ≥ 9
Проверим аналитически:
-5x -3 ≤ -48; -5x ≤ -48 +3; -5x ≤ -45; x ≥ 9.
2) y = -3/4*x - 3 = -0,75x - 1 линейная функция, график прямая линия, пересекает ось OY в точке (0; -1).
Выберем еще одну точку и построим график функции: x = 4;
y = -0,75*4 -1 = -3 - 1 = -4.
При каких значениях x значения функции меньше 2?
Построим в этой же системе координат прямую y = 2.
По графикам видно, что -0,75x - 1 ≤ -2 при x > -4
Проверим аналитически:
-0,75x -1 < 2; -0,75x < 3; x > -4.