В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Эльмаз07
Эльмаз07
16.12.2022 07:32 •  Алгебра

Постройте график линейной функции y=0,5x+1

Показать ответ
Ответ:
Diagramma1
Diagramma1
09.06.2020 07:39

Симплекс метод - это метод последовательного перехода от одного базисного решения (вершины многогранника решений) системы ограничений задачи линейного программирования к другому базисному решению до тех пор, пока функция цели не примет оптимального значения (максимума или минимума).

Симплекс-метод является универсальным методом, которым можно решить любую задачу линейного программирования, в то время, как графический метод пригоден лишь для системы ограничений с двумя переменными.

Перед тем, как перейти к алгоритму симплекс метода, несколько определений.

Всякое неотрицательное решение системы ограничений называется допустимым решением.

Пусть имеется система m ограничений с n переменными (m < n).

Допустимым базисным решением является решение, содержащее m неотрицательных основных (базисных) переменных и n - m неосновных. (небазисных, или свободных) переменных. Неосновные переменные в базисном решении равны нулю, основные же переменные, как правило, отличны от нуля, то есть являются положительными числами.

Любые m переменных системы m линейных уравнений с n переменными называются основными, если определитель из коэффициентов при них отличен от нуля. Тогда остальные n - m переменных называются неосновными (или свободными).

Алгоритм симплекс метода

Шаг 1. Привести задачу линейного программирования к канонической форме. Для этого перенести свободные члены в правые части (если среди этих свободных членов окажутся отрицательные, то соответствующее уравнение или неравенство умножить на - 1) и в каждое ограничение ввести дополнительные переменные (со знаком "плюс", если в исходном неравенстве знак "меньше или равно", и со знаком "минус", если "больше или равно").

Шаг 2. Если в полученной системе m уравнений, то m переменных принять за основные, выразить основные переменные через неосновные и найти соответствующее базисное решение. Если найденное базисное решение окажется допустимым, перейти к допустимому базисному решению.

Шаг 3. Выразить функцию цели через неосновные переменные допустимого базисного решения. Если отыскивается максимум (минимум) линейной формы и в её выражении нет неосновных переменных с отрицательными (положительными) коэффициентами, то критерий оптимальности выполнен и полученное базисное решение является оптимальным - решение окончено. Если при нахождении максимума (минимума) линейной формы в её выражении имеется одна или несколько неосновных переменных с отрицательными (положительными) коэффициентами, перейти к новому базисному решению.

Шаг 4. Из неосновных переменных, входящих в линейную форму с отрицательными (положительными) коэффициентами, выбирают ту, которой соответствует наибольший (по модулю) коэффициент, и переводят её в основные. Переход к шагу 2.

Важные условия

Если допустимое базисное решение даёт оптимум линейной формы (критерий оптимальности выполнен), а в выражении линейной формы через неосновные переменные отсутствует хотя бы одна из них, то полученное оптимальное решение - не единственное.

Если в выражении линейной формы имеется неосновная переменная с отрицательным коэффициентом в случае её максимизации (с положительным - в случае минимизации), а во все уравнения системы ограничений этого шага указанная переменная входит также с отрицательными коэффициентами или отсутствует, то линейная форма не ограничена при данной системе ограничений. В этом случае её максимальное (минимальное) значение записывают в виде .

На сайте есть Онлайн калькулятор решения задач линейного программирования симплекс-методом.

0,0(0 оценок)
Ответ:
35465
35465
05.06.2020 10:06

Неполные квадратные уравнения

Неполные квадратные уравнения – это квадратные уравнения, у которых коэффициент в или коэффициент с равен нулю. Возможно три варианта неполных уравнений:

Коэффициент b=0

Коэффициент с=0

Коэффициенты b=0 и с=0

Рассмотрим каждый из вариантов и решим несколько примеров.

Виды неполных квадратных уравнений

Каждый подвид уравнения решается быстро и Главное владеть навыком преобразования выражения, а именно переносом чисел из одной части тождества в другую и выносом общего множителя за скобку.

Первый случай

Если коэффициент b=0. Тогда формула неполного квадратного уравнения принимает вид:

ax2+с=0ax2+с=0

ax^2+с=0

В таком случае, решение принимает следующий вид:

ax2+с=0ax2+с=0

ax^2+с=0

ax2=−сax2=−с

ax^2=-с

x2=−сax2=−сa

x^2=-с\over{a}

x1=−сa−−−√x1=−сa

x_1=\sqrt{-с\over{a}}

x2=−−са−−−√x2=−−са

x_2= -\sqrt{-с\over а}- обратите внимание, что под корнем может оказаться как положительное, так и отрицательное число. Знак минуса в данном случае указывает на противоположность. В случае, если под корнем в результате получится отрицательное число, то действительных корней уравнение не имеет.

Решим пример:

7x2−28=07x2−28=0

– перенесем 28 в правую часть выражения.

7x2=287x2=28

– разделим обе части выражения на 7.

x2=4x2=4

x1=2x1=2

x2=−2x2=−2

Вот и все решение.

Второй случай

Во втором случае нулю равен будет коэффициент с. Тогда уравнение примет вид:

аx2+bx=0аx2+bx=0

аx^2+bx=0

В этом случае, решение будет выглядеть немного иначе:

ax2+bx=0ax2+bx=0

ax^2+bx=0

x(ax+b)=0x(ax+b)=0

x(ax+b)=0

x1=0x1=0

x_1=0

ax2+b=0ax2+b=0

ax_2+b=0

ax2=−bax2=−b

ax_2=-b

x2=−ba

Решим небольшой пример.

3x2−12x=03x2−12x=0

x(3x−12)=0x(3x−12)=0

x1=0x1=0

3x2−12=03x2−12=0

3x2=123x2=12

x2=123x2=123

x2=4

Этот иногда используется и при решении полных квадратных уравнений. Если уравнение можно свернуть по любой из формул сокращенного умножения, то потом каждую из скобок-множителей можно приравнять к нулю и решить уравнение гораздо быстрее, чем через дискриминант.

Третий случай

Третий случай самый когда b и с равны нулю. В этом случае, оба корня всегда равны 0.

ax2=0ax2=0

ax^2=0

x1=0x1=0

x_1=0

x2=0x2=0

x_2=0

Обратите внимание на то, что в любом случае, для корней квадратного уравнения необходима проверка. Каждый из получившихся корней нужно подставить в исходное уравнение и подсчитать результат.

Для неполных уравнений это особенно важно, потому что все считают их легкими и не акцентируют внимание на подсчетах. Это может привести к разного рода ошибкам. Чаще всего, ученики путают знаки. Вместо + получается – и наоборот. Помните, что знаки это очень важно и за ними нужно следить при переносе и делении чисел. Проверить себя можно и подставив значения в приведенные в статье формулы.

Иногда коэффициент а может быть отрицательным. В этом случае, вам придется делить на отрицательное число. А значит – все знаки выражения поменяются на противоположные. Будьте внимательны в этих скользких моментах.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота