Постройте график функции y=2/(x-4), используя список указаний [5] а) найдите асимптоты графика;
б) составь таблицу для функции y=k/x;
c) используя параллельный перенос, постройте график функции.
Найдите обратную функцию для функции y=(2х-1)/3. [3]
Даны функции [3] f(x)=√(2-x ) и g(x)=x^2-2x.Определите сложную функцию F(x)=f(g(x)
x=−7x+40x−10
Домножим обе части ур-ния на знаменатели:
-10 + x
получим:
x(x−10)=1x−10(−7x+40)(x−10)
x(x−10)=−7x+40
Перенесём правую часть уравнения в
левую часть уравнения со знаком минус.
Уравнение превратится из
x(x−10)=−7x+40
в
x(x−10)+7x−40=0Раскроем выражение в уравнении
x(x−10)+7x−40=0Получаем квадратное уравнение
x2−3x−40=0
Это уравнение вида
a*x^2 + b*x + c.
Квадратное уравнение можно решить
с дискриминанта.
Корни квадратного уравнения:
x1=D‾‾√−b2a
x2=−D‾‾√−b2a
где D = b^2 - 4*a*c - это дискриминант.
Т.к.
a=1
b=−3
c=−40
, то
D = b^2 - 4 * a * c =
(-3)^2 - 4 * (1) * (-40) = 169
Т.к. D > 0, то уравнение имеет два корня.
x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
или
x1=8
x2=−5
ответ: x=-5
Метод алгебраического сложения заключается в том, чтобы вычитая или же суммируя уравнения системы получить 1 уравнение с 1 неизвестным.
Для этого в данном примере можно умножить первое уравнение на 3 с обеих сторон (заметим, что при этом значения неизвестных не изменятся, то есть полученное уравнение будет эквивалентно исходному). После этой операции система будет иметь такой вид:
Теперь, если отнимем от первого уравнения системы второе, то получим следующее:
Как видите, мы получили уравнение с 1 неизвестным. Отсюда получаем
, а х находим, подставив y в любое из уравнений системы. Удобнее в 1ое в данном случае. Получаем x + 4 * 5 = 9, откуда x = -11.
ответ: x = -11; y = 5.