ОДЗ: x>0 Когда неизвестная содержится и в основании и в показателе степени, тогда такое уравнение решается с "логорифмирования" это значит, что к левой и правой части приписывается log по любому основанию. Чтобы уравнение не усложнять log берут по тому основанию, которое уже имеется (в данном случае в показателе степени стоит десятичный логарифм-lg,(или log₁₀) поэтому мы к левой и правой части приписываем lg) Зачем это делать? чтобы воспользоваться свойством:
то есть показатель степени можно вынести за логарифм
y=√(x−3)−|x+1|
одз: х>=3
y'=1/(2√(x−3))-sgn(x+1)
1/(2√(x−3))-sgn(x+1)=0
при х>=3 sgn(x+1) =1
1/(2√(x−3))-1=0
2√(x−3)=1
√(x−3)=1/2
x−3=1/4
х=3+1/4
y(3+1/4)=√(3+1/4−3)−|3+1/4+1|=√(1/4)−|4+1/4|=1/2−4-1/4=-3-3/4
ответ: -3-3/4
PS
находим наибольшее, потому как наименьшего не существует
пример при х=3 получится 0-4=-4 - еще меньше, но среди вариантов такого нет
и вообще при стремлении х к бесконечности линейная функция убывает быстрее чем растет корень, поэтому наименьшего на самом деле нет, а
-3-3/4 - наибольшее
Когда неизвестная содержится и в основании и в показателе степени, тогда такое уравнение решается с "логорифмирования" это значит, что к левой и правой части приписывается log по любому основанию. Чтобы уравнение не усложнять log берут по тому основанию, которое уже имеется (в данном случае в показателе степени стоит десятичный логарифм-lg,(или log₁₀) поэтому мы к левой и правой части приписываем lg)
Зачем это делать?
чтобы воспользоваться свойством:
то есть показатель степени можно вынести за логарифм
также есть свойство:
которое нам понадобится