(2x+3)(2x+1)/(x-1)(x-4)>=0 Найдем значения "x", которые обнуляют скобки в числителе и знаменателе: 2x+3=0 => x=-1,5 2x+1=0 => x=-0,5 x-1=0 => x=1 x-4=> x=4
Эти точки делят числовую прямую на 5 промежутков.Точки 1 и 4 не будут принадлежать промежутку, т.к. в этих точках знаменатель обращается в ноль.
[-1,5][-0,5](1)(4) + - + - + Смотрим, на каком из промежутков значение неравенства > 0.Это и будет ответом: x принадлежит (- бесконечность;-1,5] U [-0,5;1) U (4; + бесконечность)
№ 2:
при каком значении параметра a уравнение |x^2−2x−3|=a имеет три корня?
введем функцию
y=|x^2−2x−3|
рассмотрим функцию без модуля
y=x^2−2x−3
y=(x−3)(х+1)
при х=3 и х=-1 - у=0
х вершины = 2/2=1
у вершины = 1-2-3=-4
после применения модуля график отражается в верхнюю полуплоскость
при а=0 - 2 корня (нули х=3 и х=-1)
при 0< а< 4 - 4 корня (2 от исходной параболы, 2 от отображенной части)
при а=4 - 3 корня (2 от исходной параболы, 1 от вершины х=1)
при а> 4 - 2 корня (от исходной параболы)
ответ: 4
Найдем значения "x", которые обнуляют скобки в числителе и знаменателе:
2x+3=0 => x=-1,5
2x+1=0 => x=-0,5
x-1=0 => x=1
x-4=> x=4
Эти точки делят числовую прямую на 5 промежутков.Точки 1 и 4 не будут принадлежать промежутку, т.к. в этих точках знаменатель обращается в ноль.
[-1,5][-0,5](1)(4)
+ - + - +
Смотрим, на каком из промежутков значение неравенства > 0.Это и будет ответом: x принадлежит (- бесконечность;-1,5] U [-0,5;1) U (4; + бесконечность)