пусть х(см) - длина параллелепипеда. тогда х-5(см) - ширина параллелепипеда, х+2(см) - высота параллелепипеда. так как объём равен 240 см^3, составим уравнение:
теперь из полученного выражения вычтем один, причем вычесть его мы можем из любого слагаемого 1989*2*994+1989-1=1989*2*994+1988=1989*2*994+2*994 как мы видим, оба слагаемых кратны 994, следовательно и сумма будет делится 994, аналогично мы можем возвести в любую степень или домножить на любое число
Понятно, что х - двузначное число. Пусть x=10a+b, где а, b - его цифры. 1) Если a+b - однозначное число, то его сумма цифр совпадает с ним и х+у+z=(10a+b)+(a+b)+(a+b)=60, откуда 12а+3b=60, т.е. 4а+b=20. Возможны следующие варианты: a=5, b=0; а=4, b=4. Если a<4, то b>8 и тогда а+b не является однозначным. 2) Если а+b - двузначное, то его первая цифра равна 1, а вторая равна a+b-10, т.е. z=1+(a+b-10)=а+b-9. Итак, x+y+z=(10a+b)+(a+b)+(a+b-9)=60, откуда 12а+3b=69, т.е. 4а+b=23. Возможен только вариант а=4, b=7, т.к. .если a=5, то b=3 и a+b=8 - однозначное, а все остальные, очевидно, не подходят. Значит итоговый ответ: число х может быть 50, 44 или 47.
y^2+2xy+y^2=(x+y)^2=9
x+y=sqrt(9)=3
Объяснение:
1) =1,2b(b^3-a^3)=1,2b(b-a)(b^2+ab+b^2)
2) =1,8x^4y^2(2y-1)(2y+1)
пусть х(см) - длина параллелепипеда. тогда х-5(см) - ширина параллелепипеда, х+2(см) - высота параллелепипеда. так как объём равен 240 см^3, составим уравнение:
х * (х-5) * (х+2) = 240
1989*1989=1989(1988+1)=1989(2*994+1)=1989*2*994+1989
теперь из полученного выражения вычтем один, причем вычесть его мы можем из любого слагаемого 1989*2*994+1989-1=1989*2*994+1988=1989*2*994+2*994 как мы видим, оба слагаемых кратны 994, следовательно и сумма будет делится 994, аналогично мы можем возвести в любую степень или домножить на любое число
1) Если a+b - однозначное число, то его сумма цифр совпадает с ним и
х+у+z=(10a+b)+(a+b)+(a+b)=60, откуда 12а+3b=60, т.е. 4а+b=20. Возможны следующие варианты: a=5, b=0; а=4, b=4. Если a<4, то b>8 и тогда а+b не является однозначным.
2) Если а+b - двузначное, то его первая цифра равна 1, а вторая равна a+b-10, т.е. z=1+(a+b-10)=а+b-9. Итак,
x+y+z=(10a+b)+(a+b)+(a+b-9)=60, откуда 12а+3b=69, т.е. 4а+b=23.
Возможен только вариант а=4, b=7, т.к. .если a=5, то b=3 и a+b=8 - однозначное, а все остальные, очевидно, не подходят.
Значит итоговый ответ: число х может быть 50, 44 или 47.