В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Sunlight11
Sunlight11
02.03.2022 14:01 •  Алгебра

Последовательность (bn) - геометрическая прогрессия. Найдите S4, если b2=25, b4=1, q<0

Показать ответ
Ответ:
Nastya162005
Nastya162005
08.12.2021 22:54
Делаем вот как, число в арифм. прогрессии равно половине ближайшим чисел( тоесть додать слева и справа числа и поделить на 2) потом поймете.    и так 4y=(3z+50)\2 и 3z=(4y+2)\2 (Берем ето как систему и решаем её) : 4y=1.5z+25 и 2y=3z-1 (также, как система); Подставляем нижнюю строку в верхнюю, получаем: 6z-2=1.5z+25; 4.5z=27; z=6.                                                           П.с. вдруг пригодится, чтобы найти число из геометрической прогресии: нужно взять в квадратный корень произвИдение двух стоящих рядом числе, например в даном случае: 4y=sqrt(5x*3z)
0,0(0 оценок)
Ответ:
mariiiiii222
mariiiiii222
10.06.2022 12:27
Сумма квадратов членов прогрессии может быть записана в виде S1=b1²*(1+q²+q⁴+q⁶+). В скобках стоит бесконечная геометрическая прогрессия со знаменателем q². В условии дана бесконечно убывающая геометрическая прогрессия, а это значит, что её знаменатель q удовлетворяет условию 0<q<1. Но тогда и 0<q²<1, то есть прогрессия в скобках имеет сумму, равную 1/(1-q²). Тогда S1=b1²/(1-q²). А сумма заданной в условии прогрессии S2=b1/(1-q). По условию, S1/S2=b1/(1+q)=16/3. С другой стороны, по условию b2=b1*q=4. Мы получили систему из двух уравнений для определения b1 и q:

b1/(1+q)=16/3;
b1*q=4

Из второго уравнения находим q=4/b1. Подставляя это выражение в первое уравнение, приходим к уравнению b1²/(b1+4)=16/3, которое приводится к квадратному уравнению 3*b1²-16*b1-64=0. Дискриминант D=(-16)²-4*3*(-64)=1024=32². Тогда b1=(16+32)/6=8,
b2=(16-32)/6=-16/6=-8/3. Но так как прогрессия по условию- убывающая, то b1>b2. Значит, b1=8. Тогда q=b2/b1=4/8=1/2 и искомая сумма S7=8*((1/2)⁷-1)/(1/2-1)=8*(1-(1/2)⁷)/(1-1/2)=16*(1-(1/2)⁷)=16*(1-1/128)=16*127/128=127/8. ответ: 127/8.  
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота