Поезд должен был пройти 240 км за определенное время. после 3 часов пути он был задержан на 30 мин, и чтобы прибыть на место назначения без опоздания, ему пришлось увеличить скорость на 7/3 км/час. какова была первоначальная скорость поезда?
Пусть х рядов было в зале , по у мест в каждом ряду всего мест х*у=80 тогда после ремонта стало (х-3) ряда , по (у+4) мест (х-3)*(у+4)=84 х*у=80 (х-3)*(у+4)=84 ху=80 ху -3у+4х-12=84 ху=80 80-3у+4х-12=84 ху=80 ⇒ х=80/у 4х-3у =16 ху=80 ⇒ х=80/у 4*(80/у) -3у =16 (320/у) -3у -16=0 домножим на у , избавимся от знаменателя 320 -3у²-16у=0 3у²+16у-320=0 d= 256+3840= 4096 √d= 64 y=(-16+64)/6= 8 мест ⇒ x=80/8 =10 рядов у=(-16-64)/6 < 0 не подходит ответ : до ремонта было 10 рядов по 8 мест
Это система линейных уравнений с двумя переменными. Их решают сложения и подстановки. подстановки: из одного уравнения выражают какую-нибудь переменную (обычно ту, которую проще выразить) и подставляют это выражение во второе уравнение. Затем решают получившееся уравнение относительно уже одной переменной, полученное решение подставляют в в первое уравнение и находят значение второй переменной. В предложенном примере это сделать трудно из-за больших коэффициентов - можно запутаться. сложения: каждое из уравнений домножаем на такое число, чтобы коэффициенты у одной из переменных стали противоположными числами (например, 5 и -5).. Затем складывают почленно эти уравнения (одна из переменных "исчезает") и решают получившееся уравнение. Далее - как в 1-м Попробуем для Вашего примера. Домножим 1-е уравнение на 2, а 2-е - на 3 (коэффициенты при у станут -54 и 54 - противоположные числа) 32х - 54у = 40 15х + 54у = 124,5 сложим: 47х = 164,5 х = 3,5 Подставим теперь значение х в любое из исходных уравнений и найдем значение у: 5 · 3,5 + 18у = 41,5 17,5 + 18у = 41,5 18у = 41,5 - 17,5 18у = 24 3у = 4 у= 4/3 = 1 целая 1/3 ответ: (3,5; 1 целая 1/3). Подробнее смотрите в учебнике алгебры за 7 класс, а если в системе будут уравнения 2- й степени - то 9-й класс (под ред. Теляковского, Алимова и др.) - их можно даже скачать
5х + 18у = 41,5
Это система линейных уравнений с двумя переменными. Их решают сложения и подстановки.
подстановки: из одного уравнения выражают какую-нибудь переменную (обычно ту, которую проще выразить) и подставляют это выражение во второе уравнение. Затем решают получившееся уравнение относительно уже одной переменной, полученное решение подставляют в в первое уравнение и находят значение второй переменной.
В предложенном примере это сделать трудно из-за больших коэффициентов - можно запутаться.
сложения: каждое из уравнений домножаем на такое число, чтобы коэффициенты у одной из переменных стали противоположными числами (например, 5 и -5).. Затем складывают почленно эти уравнения (одна из переменных "исчезает") и решают получившееся уравнение. Далее - как в 1-м
Попробуем для Вашего примера.
Домножим 1-е уравнение на 2, а 2-е - на 3 (коэффициенты при у станут -54 и 54 - противоположные числа)
32х - 54у = 40
15х + 54у = 124,5
сложим:
47х = 164,5
х = 3,5
Подставим теперь значение х в любое из исходных уравнений и найдем значение у:
5 · 3,5 + 18у = 41,5
17,5 + 18у = 41,5
18у = 41,5 - 17,5
18у = 24
3у = 4
у= 4/3 = 1 целая 1/3
ответ: (3,5; 1 целая 1/3).
Подробнее смотрите в учебнике алгебры за 7 класс, а если в системе будут уравнения 2- й степени - то 9-й класс (под ред. Теляковского, Алимова и др.) - их можно даже скачать