Если дана некая функция y=f(x),то при замене x функции на любую другу переменную или выражение ,все X переходят в эти переменные или выражения;если же выполняют какое-то действие на всей функцией y=f(x),например домножают её на что-то,делят,вычитают из неё,прибавляют к ней,возводят в степень или вносят под корень,то оно действует на всю функцию(объяснил ,как Кличко))0): f(x)=5x+6 1)f(a+1)=5(a+1)+6=5a+5+6=5a+11 f(5-a)=5(5-a)+6=25-5a+6=31-5a f(a)-6=(5(a)+6)-6=5a+6-6=5a f(a/10)-3=(5(a/10)+6)-3=a/2+3=(a+6)/2 2)f(a-3)+1=(5(a-3)+6)+1=5a-15+7=5a-8 f(a+4)-2=(5(a+4)+6)-2=5a+20+4=5a+24 f(1-2a)=5(1-2a)+6=5-10a+6=11-10a -f(a+6/5)=-(5(a+6/5)+6)=-(5a+6+6)=-5a-12
f(x)=5x+6
1)f(a+1)=5(a+1)+6=5a+5+6=5a+11
f(5-a)=5(5-a)+6=25-5a+6=31-5a
f(a)-6=(5(a)+6)-6=5a+6-6=5a
f(a/10)-3=(5(a/10)+6)-3=a/2+3=(a+6)/2
2)f(a-3)+1=(5(a-3)+6)+1=5a-15+7=5a-8
f(a+4)-2=(5(a+4)+6)-2=5a+20+4=5a+24
f(1-2a)=5(1-2a)+6=5-10a+6=11-10a
-f(a+6/5)=-(5(a+6/5)+6)=-(5a+6+6)=-5a-12
Y = x³ - 3*x² + 4
1.Область определения D(x) - Х∈(-∞;+∞) - непрерывная.
Вертикальных асимптот - нет.
2. Пересечение с осью Х. Y= (x-2)²(x+1). Корни: х₁,₂ = 2, х₃ = -1.
3. Пересечение с осью У. У(0) = 4.
4. Поведение на бесконечности.limY(-∞) = - ∞ limY(+∞) = +∞.
Горизонтальной асимптоты - нет.
5. Исследование на чётность.Y(-x) ≠ Y(x).
Функция ни чётная ни нечётная.
6. Производная функции.Y'(x)= 3*x² - 6*х = 3*х*(х - 2) 0 .
Корни: х₁=0 , х₂ = 2.
Схема знаков производной.
_ (-∞)__(>0)__(x1=0)___(<0)___(x2=2)__(<0)(+∞)__
7. Локальные экстремумы.
Максимум Ymax(-1)= 4, минимум – Ymin(2)=0.
8. Интервалы монотонности.
Возрастает - Х∈(-∞;0)∪(2;+∞) , убывает = Х∈(0;2).
8. Вторая производная - Y"(x) = 6*(x - 1)=0.
Корень производной - точка перегиба Y"(1)= 0.
9. Выпуклая “горка» Х∈(-∞;1), Вогнутая – «ложка» Х∈(1;+∞).
10. Область значений Е(у) У∈(-∞;+∞)
11. Наклонная асимптота. Уравнение: lim(oo)(k*x+b – f(x).
k=lim(oo)Y(x)/x. b = lim(oo)Y(x) – k*x. Наклонной асимптоты - нет
12. График в приложении.