По графику определите: а) нули функции; б) промежутки, на которых функция принимает положительные значения; отрицательные значения; в) промежутки возрастания и убывания функции.
V=(40-X)(64-X)X - функция. найти максимум, х∈(0, 40). найдем производную от V=(40-X)(64-X)X=х³-104х²+2560х она равна 3х²-208х+2560 найдем стационарные точки , приравняв производную к 0 , и решив кв. ур-ние 3х²-208х+2560=0 1) х=(104+√(104²-3·64·40))/3=(104+√((8·13)²-3·64·40)))/3= =(104+√(8²(13²-3·40)))/3=(104+8√(13²-3·40))/3=(104+8√(169-120))/3= =(104+8·7)/3=160/3
2) х=(104-√(104²-3·64·40))/3=(104-56)/3=16 ОСТАЛОСЬ по достаточному условию экстремума убедиться, что х=16 - точка максимума, проверяем знаки производной при переходе через эту точку, решаем неравенство 3х²-208х+2560>0, или простыми вычислениями для значений х из соответствующих промежутков.)
Одночасно від двох пристаней назустріч один одному відійшли два моторні човни з однаковими швидкостями. Через 1 год вони зустрілися. Човен, який плив за течією, пройшов на 3,2 км більше, ніж інший човен. Обчисли швидкість течії річки.
Одновременно от двух пристаней навстречу друг другу отошли две моторные лодки с одинаковыми скоростями. Через 1 час они встретились. Лодка, которая плыла по течению на 3,2 км больше, чем другая лодка. Вычисли скорость течения реки.
найти максимум, х∈(0, 40).
найдем производную от V=(40-X)(64-X)X=х³-104х²+2560х
она равна 3х²-208х+2560
найдем стационарные точки , приравняв производную к 0 , и решив кв. ур-ние 3х²-208х+2560=0
1) х=(104+√(104²-3·64·40))/3=(104+√((8·13)²-3·64·40)))/3=
=(104+√(8²(13²-3·40)))/3=(104+8√(13²-3·40))/3=(104+8√(169-120))/3=
=(104+8·7)/3=160/3
2) х=(104-√(104²-3·64·40))/3=(104-56)/3=16
ОСТАЛОСЬ по достаточному условию экстремума убедиться, что х=16 - точка максимума, проверяем знаки производной при переходе через эту точку, решаем неравенство 3х²-208х+2560>0, или простыми вычислениями для значений х из соответствующих промежутков.)
вот как-то так...-))
В решении.
Объяснение:
Розв’яжи задачу, склавши рівняння:
Одночасно від двох пристаней назустріч один одному відійшли два моторні човни з однаковими швидкостями. Через 1 год вони зустрілися. Човен, який плив за течією, пройшов на 3,2 км більше, ніж інший човен. Обчисли швидкість течії річки.
Одновременно от двух пристаней навстречу друг другу отошли две моторные лодки с одинаковыми скоростями. Через 1 час они встретились. Лодка, которая плыла по течению на 3,2 км больше, чем другая лодка. Вычисли скорость течения реки.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - скорость лодок.
у - скорость течения реки.
х + у - скорость лодки по течению.
х - у - скорость лодки против течения.
По условию задачи уравнение:
(х + у)*1 - (х - у)*1 = 3,2
х + у - х + у = 3,2
2у = 3,2
у = 3,2/2
у = 1,6 (км/час) - скорость течения реки.