Для любого x из области определения функции f(x) верно следующее: f(x)=-f(-x). Это определение нечётной функции, из этого следует, что область определения должна быть симметричной относительно нуля, ведь каждому x>0 соответствует такой -x<0, что f(x)=-f(-x).
а) [-5;-3)U(3;5) этот промежуток не может являться областью определения т.к. -5 включается, а 5 не включается (для x=-5 не существует -x=5).
б) (-∞;0) U (0; +∞) здесь симметрия соблюдается.
в) [-8; 7] этот промежуток не может явл. обл. опр. т.к. -8 включается, а 8 не включается (для x=-8 не существует -x=8).
г) (-1;1) симметрия соблюдается.
ответ: а) [-5;-3)U(3;5)
в) [-8; 7]
Объяснение:
D(y)=R
Объяснение:
Областью определения функции являются все вещественные числа (множество R=(-∞; +∞)), кроме тех, при которых функция не определено. Область определения функции обозначается через D(y).
Для функции y=x² нет вещественных чисел, при которых выражение x² было бы неопределенным. Поэтому область определения функции y=x² является D(y)=R.
Для любого x из области определения функции f(x) верно следующее: f(x)=-f(-x). Это определение нечётной функции, из этого следует, что область определения должна быть симметричной относительно нуля, ведь каждому x>0 соответствует такой -x<0, что f(x)=-f(-x).
а) [-5;-3)U(3;5) этот промежуток не может являться областью определения т.к. -5 включается, а 5 не включается (для x=-5 не существует -x=5).
б) (-∞;0) U (0; +∞) здесь симметрия соблюдается.
в) [-8; 7] этот промежуток не может явл. обл. опр. т.к. -8 включается, а 8 не включается (для x=-8 не существует -x=8).
г) (-1;1) симметрия соблюдается.
ответ: а) [-5;-3)U(3;5)
в) [-8; 7]
Объяснение:
D(y)=R
Объяснение:
Областью определения функции являются все вещественные числа (множество R=(-∞; +∞)), кроме тех, при которых функция не определено. Область определения функции обозначается через D(y).
Для функции y=x² нет вещественных чисел, при которых выражение x² было бы неопределенным. Поэтому область определения функции y=x² является D(y)=R.
Объяснение:
1. При умножении степеней с одинаковыми основаниями показатели складываются, а основание остаётся прежним.
2. При делении степеней с одинаковыми основаниями основание остаётся прежним, а из показателя числителя вычитают показатель знаменателя.
3.При возведении степени в степень основание остаётся прежним а показатели перемножают.
4. При возведении в степень произведения, возводят в эту степень каждый множитель и результаты перемножают.
5. Степень числа а не равного нулю с нулевым показателем равна 1