ропорциональности. Приводим примеры, когда прямая пропорциональность встречается в повседневной жизни. Также на этом уроке мы строим график прямой пропорциональности и выясняем, от чего зависит расположение графика в координатной плоскости.
Конспект урока "Прямая пропорциональность и её график"
Вопросы занятия:
· ввести понятие «прямая пропорциональность»;
· привести примеры, когда прямая пропорциональность встречается в повседневной жизни;
· построить график прямой пропорциональности;
· определить от чего зависит расположение графика в координатной плоскости.
Материал урока
Давайте рассмотрим пример.
Пример.
Обратите внимание, что если переменную t увеличить, например, в 2 раза, то и переменная H также увеличится в 2 раза. То есть:
Также заметим, что зависимость высоты растения от времени его роста мы задали формулой вида:
В рассматриваемом примере: k = 2,5, а переменная t является независимой.
Сформулируем определение.
Определение.
С прямой пропорциональностью мы с вами часто встречаемся в повседневной жизни.
Например,
Или,
Теперь давайте построим график прямой пропорциональности:
Видим, что все точки лежат на одной прямой, которая проходит через начало координат. Для убедительности можем даже приложить линейку.
Таким образом, можем сформулировать определение.
Определение.
Графиком прямой пропорциональности y = kx является прямая, проходящая через начало координат.
Нам известно, что прямая определяется двумя точками. А значит, для построения графика функции y = kx достаточно указать любую точку графика этой функции, которая отличается от точки с координатами: (0, 0), то есть от начала координат.
Например,
А теперь посмотрите на рисунок, на котором изображены графики прямой пропорциональности.
Обратите внимание, что графики тех функций, которые имеют положительный коэффициент k расположены в первой и третьей координатных четвертях, а которые имеют отрицательный коэффициент k – во второй и четвёртой четвертях. То есть расположение графика функции y = kx в координатной плоскости зависит от коэффициента k.
График линейной функции (нет квадратных одночленов) - прямая. Строят прямую по двум точкам. Выберем значения x, найдём соответствующие значения y ⇒ получим точки. Выбирать значения x лучше так, чтобы получить целые координаты точек.
Получили две точки. Отмечаем их на координатной плоскости, соединяем линией. Получили нужный график (см. приложение).
Определить принадлежность точек графику данной функции.
Чтобы проверить, принадлежит ли точка функции, нужно подставить её координаты в уравнение функции. Если получается верное равенство - точка принадлежит графику функции.
1) А (-2; 5) ⇒ 1,8 - 0,6 × (-2) = 1,8 + 1,2 = 3 ≠ 5 ⇒ точка А не принадлежит.
2) B (-5; 4,8) ⇒ 1,8 - 0,6 × (-5) = 1,8 + 3 = 4,8 ⇒ точка B принадлежит.
ропорциональности. Приводим примеры, когда прямая пропорциональность встречается в повседневной жизни. Также на этом уроке мы строим график прямой пропорциональности и выясняем, от чего зависит расположение графика в координатной плоскости.
Конспект урока "Прямая пропорциональность и её график"
Вопросы занятия:
· ввести понятие «прямая пропорциональность»;
· привести примеры, когда прямая пропорциональность встречается в повседневной жизни;
· построить график прямой пропорциональности;
· определить от чего зависит расположение графика в координатной плоскости.
Материал урока
Давайте рассмотрим пример.
Пример.
Обратите внимание, что если переменную t увеличить, например, в 2 раза, то и переменная H также увеличится в 2 раза. То есть:
Также заметим, что зависимость высоты растения от времени его роста мы задали формулой вида:
В рассматриваемом примере: k = 2,5, а переменная t является независимой.
Сформулируем определение.
Определение.
С прямой пропорциональностью мы с вами часто встречаемся в повседневной жизни.
Например,
Или,
Теперь давайте построим график прямой пропорциональности:
Видим, что все точки лежат на одной прямой, которая проходит через начало координат. Для убедительности можем даже приложить линейку.
Таким образом, можем сформулировать определение.
Определение.
Графиком прямой пропорциональности y = kx является прямая, проходящая через начало координат.
Нам известно, что прямая определяется двумя точками. А значит, для построения графика функции y = kx достаточно указать любую точку графика этой функции, которая отличается от точки с координатами: (0, 0), то есть от начала координат.
Например,
А теперь посмотрите на рисунок, на котором изображены графики прямой пропорциональности.
Обратите внимание, что графики тех функций, которые имеют положительный коэффициент k расположены в первой и третьей координатных четвертях, а которые имеют отрицательный коэффициент k – во второй и четвёртой четвертях. То есть расположение графика функции y = kx в координатной плоскости зависит от коэффициента k.
График линейной функции (нет квадратных одночленов) - прямая. Строят прямую по двум точкам. Выберем значения x, найдём соответствующие значения y ⇒ получим точки. Выбирать значения x лучше так, чтобы получить целые координаты точек.
x₁ = -2 ⇒ y₁ = 1,8 - 0,6 × (-2) = 3 ⇒ точка (-2; 3);
x₂ = 3 ⇒ y₂ = 1,8 - 0,6 × 3 = 0 ⇒ точка (3; 0).
Получили две точки. Отмечаем их на координатной плоскости, соединяем линией. Получили нужный график (см. приложение).
Определить принадлежность точек графику данной функции.Чтобы проверить, принадлежит ли точка функции, нужно подставить её координаты в уравнение функции. Если получается верное равенство - точка принадлежит графику функции.
1) А (-2; 5) ⇒ 1,8 - 0,6 × (-2) = 1,8 + 1,2 = 3 ≠ 5 ⇒ точка А не принадлежит.
2) B (-5; 4,8) ⇒ 1,8 - 0,6 × (-5) = 1,8 + 3 = 4,8 ⇒ точка B принадлежит.
ответ: A не принадлежит, B принадлежит.