V=Sосн*H Sосн=(1/2)*d₁*d₂ d₁=6√3 большая диагональ призмы составляет с основанием угол 30°. прямоугольный треугольник: гипотенузы - большая диагональ призмы катет - большая диагональ основания призмы d₁=6√3 катет - высота призмы H угол между катетом d₁ и гипотенузой 30°. tg30°=H/d₁. H=d₁*tg30°. H=6
меньшая диагональ призмы образует с основанием угол 45°. прямоугольный треугольник: гипотенуза - меньшая диагональ призмы катет - меньшая диагональ основания d₂ катет - высота призмы Н=8 угол между катетом d₂ и гипотенузой равен 45°, => d₂=H, =>d₂=6 V=(1/2)*6√3*6*6 V=108√3
Sосн=(1/2)*d₁*d₂
d₁=6√3
большая диагональ призмы составляет с основанием угол 30°.
прямоугольный треугольник:
гипотенузы - большая диагональ призмы
катет - большая диагональ основания призмы d₁=6√3
катет - высота призмы H
угол между катетом d₁ и гипотенузой 30°.
tg30°=H/d₁. H=d₁*tg30°. H=6
меньшая диагональ призмы образует с основанием угол 45°.
прямоугольный треугольник:
гипотенуза - меньшая диагональ призмы
катет - меньшая диагональ основания d₂
катет - высота призмы Н=8
угол между катетом d₂ и гипотенузой равен 45°, =>
d₂=H, =>d₂=6
V=(1/2)*6√3*6*6
V=108√3
x₁+x₂=-4
x₁x₂=-21
-21=-3·7 или -21=3·(-7)
х₁=-3 х₂=7 х₁=3 х₂=-7
но
х₁+х₂=-3+7=4- не подходит х₁+х₂=3-7=-4 - верно
Значит корни квадратного трехчлена х²+4х-21 равны 3 и (-7).
Квадратный трехчлен раскладывается на множители по формуле
ах²+bx+c=a(x-x₁)(x-x₂)
х²+4х-21=(x-3)(x-(-7))=(x-3)(x+7)
2)х³-9х²-22х=x(x²-9x-22)=x(x+2)(x-11)
x₁+x₂=9
x₁x₂=-22
-22=-2·11 или -22=2·(-11)
х₁=-2 х₂=11 х₁=2 х₂=-11
но
х₁+х₂=-2+11=9- верно х₁+х₂=2-11=-9 -не подходит
Значит корни квадратного трехчлена х²-9х-22 равны 11 и (-2).
х²-9х-22=(x-11)(x-(-2))=(x-11)(x+2)